
CENTRES AND CENTRALIZERS OF

IWAHORI-HECKE ALGEBRAS

by

Andrew Francis

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy.

School of Mathematics

University of New South Wales

May 1998

Typeset by AMS-TEX



ii

Abstract

This thesis describes the minimal basis for the centre of an Iwahori-Hecke alge-

bra.

Defining the Iwahori-Hecke algebra H over Z[ξs]s∈S - a subring of the traditional

ring of definition - we begin by defining positivity in H, and by describing a very

simple basis for the centralizer of the subalgebra generated by the element corre-

sponding to a single simple reflection of the Coxeter group. This basis provides

the building blocks for the results to follow on the centre.

The main result is that the set of primitive minimal positive elements of the

centre forms a basis for the centre over Z[ξs]s∈S . The elements of this basis we call

“class elements”, and the basis itself the “minimal basis”. It has many important

properties aside from its minimality. For instance, it can be characterized as

exactly those elements which specialize (on setting ξs = 0 for all s ∈ S) to the sum

of terms in a conjugacy class, and which have no other terms which are shortest

elements of any other conjugacy class.

The approach is entirely independent of character theory, relying only on Cox-

eter group properties, making the whole theory very combinatorial in nature. This

has several advantages, among which is that it can be generalized to centralizers

of parabolic subalgebras, and we do this in some cases.

We define and make use of a constructive algorithm to explicitly find any class

element. This algorithm relies on the basis of the centralizer of an element corre-

sponding to a single generator, and reveals some further useful information about

the class elements.

Finally we look at an important application of this work to the Brauer homo-

morphism for Iwahori-Hecke algebras defined by Jones.
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Introduction

This thesis began as an attempt to generalize the norm results of Lenny Jones

[J2] over Q[q, q−1] from type A to type B and other types, but has ended departing

from norms and arriving with the concept of the minimal basis. We will however

use norms at several key points in the thesis, and will return to them when we

apply the results to the Jones definition of the Brauer homomorphism in type A.

The results here form part of the growing body of research developing the anal-

ogy between group algebras of Coxeter groups and their q-analogues, the Iwahori-

Hecke algebras. So far however, much of this development has required fairly

sophisticated techiniques, such as character theory, Kazhdan-Lusztig cell theory,

and the Tits deformation theorem. A key point of this thesis is that the results

here are purely combinatorial in nature, in that we only require results on the

properties of finite Coxeter groups.

Specifically, of course, we are looking at the relationship between centres and

centralizers of the group algebra of a Coxeter group W , and of an Iwahori-Hecke

algebra. In the group algebra case, the centre of ZW has a well-known basis

consisting of the sum of elements in a conjugacy class C, often denoted C. This

basis can be described using a characteristic function on elements of the conjugacy

class. For instance, if χC(w) = δCC′ where w ∈ C ′ and δ is the Kronecker delta,

then
∑

w∈W χC(w)w = C. This characteristic function can be written as a linear

combination of the irreducible characters of W .

In the q-analogue, the Iwahori-Hecke algebras, the characteristic function does

not yield a basis for the centre. However it is possible to find a q-analogue of the

characteristic function in terms of a linear combination of the irreducible characters

of H, which does the job. The possibility of this was pointed out to me in 1995

by John Graham, and in late 1996 when my work on the approach presented here

was already well advanced, I received a pre-print of a paper by Meinolf Geck and

Raphael Rouquier ([GR]) in which they do exactly this.

The approach which we develop here involves recognizing that the conjugacy

class sums C in the group algebra are the minimal elements of a poset on the
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“positive cone” of Z(ZW ). The generalization of this statement to Iwahori-Hecke

algebras forms the main theorem of the thesis: the primitive minimal positive cen-

tral elements are an integral basis for the centre of H, which we call the “minimal

basis”. The elements of this basis (the “class elements”) are characterized by two

facts: they specialize to a conjugacy class sum; and apart from that conjugacy

class sum, there are no shortest elements of any conjugacy class in them. It will

turn out that the Geck-Rouquier basis is in fact the minimal basis.

The proof of this is entirely combinatorial in nature, and relies only on properties

of Coxeter groups, including the theorem of Geck and Pfeiffer. Thus one advantage

our approach has is to remove the representation theory from the problem.

Another advantage is computational. We provide an algorithm for calculating

elements of the minimal basis, starting from the sum of terms corresponding to

shortest elements in a conjugacy class, and adding terms until a class element is

reached. This algorithm is computationally more direct than using characters,

as with the character theory approach, one needs to evaluate the image of the

irreducible character on every basis element T̃w of H. The algorithm we provide

means only those with non-zero coefficient in the class element are calculated.

A third advantage is that our approach is thoroughly generalizable to central-

izers of parabolic subalgebras, and to non-crystallographic Coxeter groups. In the

group algebra case, the characteristic function for J-conjugacy classes (where J is a

subset of the set of simple reflections S) provides a basis of J-conjugacy class sums.

But it is not possible to write this characteristic function in terms of irreducible

characters when J 6= S. So an Iwahori-Hecke algebra analogy is not possible via

character theory. Our methods are readily generalizable to parabolic subalgebras,

subject to proving an analogy of the Geck-Pfeiffer theorem for J-conjugacy classes.

We provide proofs of some specific cases throughout the thesis.

Chapter 1 begins with the standard definitions and results in Coxeter groups

and Iwahori-Hecke algebras, including the result of Geck and Pfeiffer on conjugacy

classes of Weyl groups.

Chapter 2 sets up some of the new structures used in the thesis. We define

positivity in the Iwahori-Hecke algebra, and then introduce a partial order on the
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positive part of the algebra, and the positive part of the centre. This sets up

the statement of the main result for centres, which is that if W is either a Weyl

group, dihedral, or of type H3, a certain subset of the minimal elements of the

positive part of the centre of the corresponding Iwahori-Hecke algebra (the set of

“primitive” minimal elements) is a Z[ξs]s∈S-basis for the centre. Further, there is

a simple characterization of these primitive minimal elements.

Chapter 3 contains the proofs of the main result for centres as set up in Chapter

2. A core piece of this minimal structure is presented in the first section, with the

basis for the centralizer of the generator T̃s for some simple reflection s. We

show the existence of the class elements in section two. These are elements which

specialize to the conjugacy class sum, and which contain no other shortest elements

of other conjugacy classes. Their existence is necessary for the proof of the main

result, and has been shown in the case of centres by Geck and Rouquier using

character theory when W is a Weyl group. The existence of such elements may

also be derived from the results of Jones in type A, and a description of both of

these existence proofs is found in [Fr] and Appendix A.

This chapter also contains the definition of the algorithm for constructing the

class elements, the proof that these class elements are the primitive minimal posi-

tive central elements, and the proof that they are an integral basis for the centre.

Chapter 4 contains a generalization of the main result of chapter two to cen-

tralizers of certain parabolic subalgebras, using the chain theory introduced by

Brieskorn and Saito in [BS]. Chapter 5 describes in detail several examples of the

minimal basis, including those corresponding to dihedral groups, type H3, and

small groups of type A2, A3, A4, B2, and B3.

Finally Chapter 6 applies the results on the minimal basis to the Brauer homo-

morphism for Iwahori-Hecke algebras. We begin by deriving several more results

following from the algorithm, which yield important information about the class

elements. This information is vital for the results on the Brauer homomorphism.

We then describe the image of the minimal basis, and the kernel of the homo-

morphism in terms of the minimal basis. Chapter 7 does some combinatorics in

finding a correspondence between J-conjugacy classes in a conjugacy class in type
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An and certain compositions of n + 1.

Note: Since the submission of this thesis, I have found that the Geck-Pfeiffer

result (Theorem (1.1.2)) has been proved for the non-crystallographic types as

well. Thanks to Meinolf Geck for this information. The proofs in these cases can

be found in the paper [GHLMP], and are done using the computer algebra system

CHEVIE (a relative of GAP, which was used for the crytallographic cases).

This means that the results in this thesis stated excluding type H4 are now valid

for any finite Coxeter group. In particular, Theorem (2.2.1), Lemmas (3.2.3),

(3.2.5), and Proposition (3.4.2) are now completely general. Also, Proposition

(5.1.1) (for the dihedral groups) and (5.2.1) and (5.2.2) (for H3) can be found in

[GHLMP].
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Index of Notation
Q the field of rational numbers.

Z the ring of integers.

N the set of non-negative integers (including zero).

R Z[ξs]s∈S

R+ N[ξs]s∈S

F Q(ξs)s∈S

W a finite Coxeter group.

S the generating set for W

J a subset of S

WJ the parabolic subgroup of W generated by J

DJ,K the set of distinguished WJ -WK double coset representatives in W

C a conjugacy class of W

C a J-conjugacy class of W for J ⊆ S

ccl(W ) the set of conjugacy classes of W

cclJ(W ) the set of J-conjugacy classes of W

lC the length of the shortest elements of C

Cmin the set of shortest elements of C

Cw the J-conjugacy class containing w

C
w the equivalence class in C containing w generated by ∼s for s ∈ J

Hq the Iwahori-Hecke algebra over Z[q1/2
s , q−1/2

s ]s∈S

H the Iwahori-Hecke algebra over R

HJ the Iwahori-Hecke algebra generated by {T̃s | s ∈ J}

H+ the Iwahori-Hecke algebra over R+

Z(H) the centre of H

Z(H)+
min

the set of primitive minimal positive central elements of H

ZH(HJ) the centralizer of HJ in H



Chapter 1

Preliminaries

We begin by setting out some basic definitions and general results we will need

on finite Coxeter groups and Iwahori-Hecke algebras of finite Coxeter groups.

1.1. Coxeter Groups

Let W be a finite Coxeter group with generating set S of simple reflections.

Then for s, s′ ∈ S, W has relations

s2 = 1

(ss′)mss′ = 1

for some mss′ ∈ N. We refer to a word as an element of W written as a product of

the generators. In general there are many words in the elements of S which repre-

sent the same group element w ∈ W . If r ∈ N is minimal such that s1s2 . . . sr = w

for si ∈ S, then we say s1 . . . sr is a reduced expression for w, and that the length of

w is l(w) = r. Finite Coxeter groups are classified according to their root systems

(see for example [H]), and those corresponding to a crystallographic root system

are called Weyl groups. This thesis will deal exclusively with finite Coxeter groups.

If J ⊆ S, the parabolic subgroup WJ of W is the subgroup generated by the set

of simple reflections J . Each parabolic subgroup of a Coxeter group is a direct

product of Coxeter groups.

Each Coxeter group is partitioned into conjugacy classes C. We may also par-

tition W into J-conjugacy classes, corresponding to sets of elements conjugate by

elements of WJ . These are sometimes called orbits of WJ under conjugation. We

denote the set of all J-conjugacy classes in W by cclJ(W ), and abbreviate cclS(W )

to ccl(W ). To distinguish reference to conjugacy classes and J-conjugacy classes,

we will use C to denote an (S-) conjugacy class, and C for a general J-conjugacy

class when J may be a subset of S.

For w ∈ W , we write Cw for the J-conjugacy class containing w. Let lC be the

length of the shortest elements in the J-conjugacy class C, and let Cmin be the set

of shortest elements in C.

Typeset by AMS-TEX
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For any J-conjugacy class C and s ∈ J we can define an equivalence relation ∼s

on C by writing w ∼s u if sws = u and l(w) = l(u). We then define the equivalence

class ∼J to be generated by the relations ∼s for s ∈ J . The ∼J -equivalence classes

consist of elements of the same length which can be reached from each other by

a sequence of conjugations by simple reflections from J , where each step in the

sequence gives an element in C of the same length.

Each J-conjugacy class C is the disjoint union of such ∼J -equivalence classes,

so we can specify uniquely the ∼J -equivalence class by choosing a representative

from it. We will denote the ∼J -equivalence class containing w by Cw.

For w,w′ ∈ C for some J-conjugacy class C, we say w →J w′ if there exists

a sequence r1, r2, . . . , rm of elements of J and a sequence w0, . . . , wm of elements

of C such that if w0 = w, and wi = riwi−1ri (1 ≤ i ≤ m) then wm = w′, and

l(wi) ≤ l(wi−1) with wi 6= wi−1, for 1 ≤ i ≤ m.

(1.1.1) Definition. Let C be a J-conjugacy class of W . We say C is reducible

if for all w ∈ C there exists a v ∈ Cmin such that w →J v. Each WJ -WJ double

coset in W is partitioned by J-conjugacy classes, and if every J-conjugacy class

in the double coset WJdWJ is J-reducible, we say that the double coset WJdWJ is

reducible.

The following result is from [GP], Theorem 1.1.

(1.1.2) Theorem. (Geck-Pfeiffer) Every conjugacy class C of a Weyl group W

is reducible.

Furthermore, if w and w′ ∈ Cmin, then there exists a sequence of xi ∈ W

and wi ∈ Cmin such that w = w0, xiwix
−1
i = wi+1, and wn = w′, with either

l(xiwi) = l(xi) + l(wi) or l(wix
−1
i ) = l(wi) + l(x−1

i ) for each i.

This theorem is an invaluable tool for the results in this thesis.

(1.1.3) Corollary. Let w ∈ C ∈ ccl(W ), with l(w) > lC . Then there exists a

u ∈ Cw and an s ∈ S such that l(sus) = l(u) − 2.

This means that in every equivalence class Cw not containing shortest elements

from C, there is at least one element which shortens on conjugation by a simple
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reflection.

(1.1.4) Remark. We can define a partial order on these equivalence classes as

follows. We say Cw ≥ Cu if l(w) ≥ l(u) and there exists a w′ ∈ Cw and u′ ∈ Cu

such that w′ →S u′. If either of those inequalities are equalities, then both are,

and we have Cw = Cu. That is, u ∈ Cw and vice versa.

In this context, (1.1.3) tells us that for each Cw with l(w) 6= lC , there exists a

set Cu such that Cw > Cu, and (1.1.3) gives the existence of a Cv for v ∈ Cmin

such that Cw > Cv.

(1.1.5) Example. The Weyl group of type A3 is generated by S = {s1, s2, s3}

with relations s2
i = (s1s2)

3 = (s2s3)
3 = (s1s3)

2 = 1. The Hasse diagram for the

above poset on the conjugacy class C = {s1s2, s2s1, s2s3, s3s2, s1s2s3s2, s2s3s2s1,

s1s2s1s3, s3s1s2s1} is:

Cs1s2s3s2

�
�

�
�

� @
@

@
@

@
Cs1s2 Cs2s3

1.2. Iwahori-Hecke Algebras

Let {qs | s ∈ S} be a set of indeterminates such that qs = qt if s and t are

conjugate in the finite Coxeter group W . We define the Iwahori-Hecke algebra Hq

corresponding to W to be the associative Z[q
1/2
s , q

−1/2
s ]s∈S-algebra generated by

the set {Ts}s∈S , with relations

T 2
s = qsT1 + (qs − 1)Ts,(∗)

T̃sT̃s′ T̃s . . .
︸ ︷︷ ︸

mss′

= T̃s′ T̃sT̃s′ . . .
︸ ︷︷ ︸

mss′

.

If w = s1 . . . si is a reduced expression for w, then we define

Tw := Ts1 . . . Tsi .

As well as being an algebra generated by {Ts}s∈S , Hq is then a Z[q
1/2
s , q

−1/2
s ]s∈S-

module with basis {Tw}w∈W .
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Let R = Z[ξs]s∈S , where ξs = q
1/2
s − q

−1/2
s for each s ∈ S. Then R is a subring

of Z[q1/2, q−1/2]s∈S . Let R+ = N[ξs]s∈S , R0 = Z, and R+
0 = N, where we adopt

the convention that N includes zero. Further, we write F = Q(ξs)s∈S for the field

of fractions of R.

We will find it useful to change the base ring of Hq from Z[q
1/2
s , q

−1/2
s ]s∈S to

the subring R by setting T̃s = q
−1/2
s Ts, to give us an R-subalgebra denoted H.

The relation (∗) in H then becomes

T̃ 2
s = T̃1 + ξsT̃s,

which has the obvious benefit of being simpler. It also has valuable positivity

properties, since for any two basis elements T̃x and T̃y ∈ H, their product T̃xT̃y =
∑

w∈W fx,y,wT̃w has all coefficients fx,y,w in R+ = N[ξs]s∈S . Thus the product

of any two elements of H whose coefficients are from R+ (that is, they are linear

combinations of the T̃w over R+) also has coefficients in R+. These observations

motivate the definition of H+ in the next chapter.

If X is a subset of W (for example a conjugacy class), we denote by T̃X the

following sum:

T̃X :=
∑

x∈X

T̃x.

The algebra Hq can be obtained from H by the following change of coefficient

ring:

Hq
∼= Z[q1/2

s , q−1/2
s ]s∈S ⊗R H.

Consequently the centre of H embeds in the centre of Hq, and an R-basis of

Z(H) will become a Z[q
1/2
s , q

−1/2
s ]s∈S-basis for Z(Hq) after changing ξs back to

q
1/2
s − q

−1/2
s and T̃s back to q

− 1
2

s Ts. We deal with this, and with obtaining a

Z[qs, q
−1
s ]s∈S-basis from the minimal R-basis, at the end of section 3.3.

Frequent use will be made of specializing the parameters ξs to zero (equivalent to

setting qs = 1 in Hq), so for any h ∈ H, we write h0 = h|ξs=0 for this specialization.

The following is proven in [J2: (2.4)], using properties of Frobenius algebras.

We will give a combinatorial proof in section 3.1.
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(1.2.1) Lemma. Let w ∈ Cmin for C ∈ ccl(W ). Then the element

NW,1(T̃w) =
∑

u∈W

T̃u−1 T̃wT̃u

is in the centre Z(H).

(1.2.2) Lemma. The set {NW,1(T̃wC
) | C ∈ ccl(W ), wC ∈ Cmin} is linearly

independent over F , and is contained in Z(H).

Proof. The centrality follows from (1.2.1).

Write NC := NW,1(T̃wC
), and suppose there is some relation

∑

C fCNC = 0 for

fC ∈ F . We will show that this implies that there is a non-trivial relationship

among conjugacy class sums.

Firstly, we may assume that all fC ∈ R, by multiplying out denominators. We

may also assume that the set {fC}C has no common factor of ξs for any s ∈ S.

Choose an arbitrary s′ ∈ S. Then there must be some fC such that fC |ξs′=0 6= 0,

and so
∑

C fC |ξs′=0NC |ξs′=0 6= 0 since none of the NC will specialize to zero (they

each have aC T̃C ≤ NC for aC ∈ N). That is,
∑

C fC |ξs′=0NC |ξs′=0 = 0 is a

non-trivial relation.

We now may remove all common factors of elements of {ξs}s∈S\{s′} from the set

{fC |ξs′=0}. Then by choosing another s ∈ S\{s′}, we may continue in this fashion,

eventually obtaining (after specializing each ξs to zero) our desired relation

∑

C

f ′
CNC |ξs=0,s∈S = 0

with not all f ′
C ∈ N equal to zero. This is a contradiction, since NC |ξs=0,s∈S =

aC T̃C for some aC ∈ N, so the above relation is a relation between conjugacy class

sums, which are linearly independent. �

In fact the set of norms as stated in (1.2.2) is an F -basis for Z(HF ). This fact

may be easily obtained using the Tits deformation theorem. However, the above

(more elementary) lemma will suffice for our purposes.
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Chapter 2

The main results

2.1 Positivity

We now make a brief excursion into higher generality to define positivity and

obtain some basic consequences of the definition.

Let A be a free Z[ξi]i∈I -module for some indexing set I and indeterminates ξi,

with basis X = {x1, . . . , xn}. Let A0 be the free Z-module with the same basis.

Then A = Z[ξi]i∈IX and A0 = ZX.

Let Monj := Monj(ξi)i∈I be the set of monomials in {ξi | i ∈ I} of order j.

That is, the set of products of the ξi whose exponent sum is j. We will make

extensive use of this set of monomials, and so to reduce repetition, we will use the

notation mj to denote an arbitrary element of Monj .

We may consider A as a Z-module with basis {mjxk | mj ∈ Monj , j ≥ 0, 1 ≤

k ≤ n}. Then we have

A =
∑

j≥0

mj∈Monj

A0mj .

It would be natural to consider N[ξi]i∈I to be the positive part of the ring

Z[ξi]i∈I , and there is a similarly natural partial order on the elements of N[ξi]i∈I :

if f =
∑

j≥0,mj∈Monj
fmj mj and g =

∑

j≥0,mj∈Monj
gmj mj for fmj , gmj ∈ N, then

f ≤ g if and only if fmj ≤ gmj for all j. An equivalent expression of this is to say

f ≤ g if and only if g − f ∈ N[ξi]i∈I .

This partial order on the positive part of Z[ξi]i∈I induces a partial order on the

positive part of any free Z[ξi]i∈I -module. Since A = Z[ξi]i∈IX, define the positive

part of A to be A+ = N[ξi]i∈IX. Define a partial order on A+ by saying that if

a =
∑

1≤k≤n akxk and b =
∑

1≤k≤n bkxk where ak, bk ∈ N[ξi]i∈I , then a ≤ b in

A+ if and only if ak ≤ bk in N[ξi]i∈I for all xk ∈ X. This is equivalent to saying

a ≤ b in A+ if and only if b − a ∈ A+.

There is an equally obvious partial order on A+
0 = NX. If a0 =

∑

xk∈X ckxk

and b0 =
∑

xk∈X dkxk for ck, dk ∈ N then a0 ≤ b0 in A0 if and only if ck ≤ dk in

N for 1 ≤ k ≤ n, which is equivalent to having b0 − a0 ∈ A+
0 .
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If we were to turn A into a Z[ξi]i∈I -algebra by defining a multiplication between

elements of its basis X such that xlxm ∈
∑n

k=1 N[ξi]i∈Ixk, then we have the

following self-evident lemma:

(2.1.1) Lemma. If xlxm ∈
∑n

k=1 N[ξi]i∈Ixk for all 1 ≤ l,m ≤ n, then sums and

products of elements of A+ are also in A+.

This may seem a severe restriction on the multiplication, but as pointed out in

section 1.2, Iwahori-Hecke algebras satisfy this property.

Although we don’t use the definition of intersection or union in this thesis, they

seem potentially useful, so we give them here.

Define the intersection x ∩ y of elements x, y ∈ NX = A+
0 to be the maximal

element z ∈ NX such that z ≤ x and z ≤ y. For any y, z ∈ NX, we may write

y =
∑

1≤k≤n ykxk, and z =
∑

1≤k≤n zkxk, for yk, zk ∈ N. Then

y ∩ z =
∑

1≤k≤n

min(yk, zk)xk.

Similarly we define the union y ∪ z of elements y, z ∈ NX to be the minimal

element in NX greater than both y and z. Then for the above y and z we have

y ∪ z =
∑

1≤k≤n

max(yk, zk)xk.

We can define an analogous intersection and union for any two positive el-

ements of the Z[ξi]i∈I -algebra A. Let a, b ∈ A+. Then a ∩ b is the maximal

element c ∈ A+ such that c ≤ a and c ≤ b. For any a, b ∈ A+, we may write

a =
∑

0≤j≤N,mj∈Monj
amj mj and b =

∑

0≤j≤M,mj∈Monj
bmj mj , for amj , bmj ∈ NX.

Then

a ∩ b =
∑

0≤j≤min(M,N)

mj∈Monj

(amj ∩ bmj )mj .

Similarly the union a∪ b of a, b ∈ A+ is the minimal element greater than both

a and b. With a and b as defined above we have

a ∪ b =
∑

0≤j≤max(M,N)

mj∈Monj

(amj ∪ bmj )mj .
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2.2 The main results

For any Z[ξi]i∈I -submodule B of A, let min(B+) be the set of non-zero minimal

elements of the partial ordering (B+,≤), and similarly let min(B+
0 ) be the set of

non-zero minimal elements of the poset (B+
0 ,≤0).

The elements of min(A+
0 ) are simply the elements of X (which are a Z-basis for

A0), and the elements of min(A+) are mj-multiples of elements of X for mj ∈ Monj

(which are a Z-basis for A). The sets min(A+) and min(B+) are not finite if A

and B are non-trivial. For example if a 6= 0 is minimal in B+, then so is ξia, and

so is ξ2
i a, and so on.

We will restrict attention to a set of representatives of min(B+) (so as to exclude

mj-multiples). Write

a =
∑

j≥0

mj∈Monj

amj mj ∈ B+

with amj ∈ NX. We will call a primitive if the set of monomials mj in a with

amj 6= 0 has no common factor.

Let B+
min be the set of primitive minimal elements of the poset (B+,≤). We

then have

min(B+) =
⋃

j≥0

mj∈Monj

mjB
+
min.

In this thesis we look at A = H, indexing set I = S (the set of simple reflections

of W ), with R-basis {T̃w | w ∈ W}, and B = Z(H). The multiplication between

the elements T̃w ∈ H+ has the positivity property required for lemma (2.1.1), so

the conclusion holds: that the sums and products of elements of H+ are also in

H+. This is a simple yet significant benefit of moving to the ring R.

For the group algebra RW , we have that primitive minimal positive elements

of the centre Z(RW ) are conjugacy class sums, and so form an R-basis of Z(RW ).

The analogous result for the Iwahori-Hecke algebra would be that Z(H)+
min is an

R-basis for Z(H), and this is our main result below. Another aspect of the analogy

is that all elements of Z(RW )+min have non-zero specialization. This carries over

to H also.

Our main theorem for centres is then the following.
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(2.2.1) Theorem. Let W be any finite Coxeter group except that of type H4.

Then

(i) Z(H)+min is an R-basis for Z(H),

(ii) h ∈ Z(H)+min if and only if

a) h0 = T̃C for some conjugacy class C of W , and

b) h − T̃C contains no shortest elements of any conjugacy class of W .

The proof of the Weyl group part of (2.2.1) is contained in section 3.2. This

theorem is proved using only properties of the Coxeter groups, such as the Geck-

Pfeiffer theorem, which we needed to generalize to dihedral groups and H3 (H4

is excluded from the above theorem for computational reasons relating to the

generalization of (1.1.2)).

Thus we have an elementary approach to the centres of Iwahori-Hecke algebras,

including a description of the R-basis not only in terms of minimal elements of

an easily defined poset, but a characterization of these minimal elements which

is entirely analogous to the classical case. This characterization indicates that in

fact the basis found by Geck and Rouquier in [GR] is the same as the minimal

basis, as their elements satisfy properties a) and b) above.

Our approach to the proof of this theorem will be to build up from a minimal

basis for the centralizer of a single generator, T̃s. Such a basis is found in section

3.1. This approach lends itself naturally to generalization to arbitrary centralizers,

and we pursue this in several cases later in the thesis. This kind of generalization

is not possible using the character theory approaches such as used in [R], [C2] and

[GR].

We will also provide an algorithm for computing the minimal basis, which is

elementary, and which is analogous to an algorithm for computing the elements of

a conjugacy class when one is given the shortest elements. This we do in section

3.3. The algorithm serves not only as a computational tool, but the fact that it is

well defined leads to further details about the basis which becomes very useful in

our applications to the Brauer homomorphism in chapter six.

We also will generalize (2.2.1) to centralizers of certain parabolic subalgebras.

To do this, it is necessary (and sufficient, in fact), to generalize (1.1.2) to J-
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conjugacy classes. We do this for several cases in chapters four and five, giving

us:

(2.2.2) Theorem. Let J ⊆ S, and suppose that either: J is principal in types A

and B; or |J | = 1 or 2, and W is a Weyl group. Then

(i) ZH(HJ)+min is an R-basis for ZH(HJ),

(ii) h ∈ ZH(HJ)+min if and only if

a) h0 = T̃C for some J-conjugacy class C of W , and

b) h − T̃C contains no shortest elements of any J-conjugacy class of W .
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Chapter 3

Centres of Iwahori-Hecke algebras

3.1 The s-class elements

We now introduce the fundamental building blocks of any central element. In-

deed, the building blocks of any element which commutes with an element of a

parabolic subalgebra of H. These are the basis elements of the centralizer of a

single generator T̃s, which we will call s-class elements. Considering the central-

izer of such a small subalgebra is a natural viewpoint, since the centralizer of any

parabolic subalgebra is contained in the centralizer of each generator of the para-

bolic subalgebra. So in particular, the centre is simply the intersection of the set

of centralizers of all generators:

Z(H) =
⋂

s∈S

ZH(T̃s).

If J = {s} ⊆ S, we will call a J-conjugacy class an s-conjugacy class. Every

s-conjugacy class is contained in a double coset 〈s〉d〈s〉, for some d ∈ D〈s〉,〈s〉, the

set of distinguished 〈s〉-〈s〉 double coset representatives in W . The double cosets

may be classified according to whether the intersection 〈s〉d ∩ 〈s〉 is 1 or 〈s〉, and

this provides the following means of listing all the possible types of s-conjugacy

class.

If the intersection is 1, then ds 6= sd, and otherwise ds = sd. So every double

coset either consists of elements {d, ds, sd, sds} in the trivial intersection case, or

{d, ds} in the non-trivial intersection case. We can then list the s-conjugacy classes

as follows: if ds 6= sd, we have {d, sds} and {sd, ds}; if ds = sd we have {d} and

{ds}.

The basis for the centralizer of s in ZW = R0W is the set of s-conjugacy class

sums. From the above this is the set of all elements of form d or ds if ds = sd,

and all elements of form d + sds or ds + sd if ds 6= sd. Furthermore, these are

the minimal elements of (ZR0W (s),≤0). We will give the Iwahori-Hecke algebra

analogy in (3.1.9).

The following lemma is inspired by (2.4) in [DJ2].
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(3.1.1) Lemma. Let c =
∑

w∈W rwT̃w for rw ∈ R, and let s ∈ S. Then c is in

ZH(T̃s) if and only if for all d distinguished in 〈s〉d〈s〉 such that sd 6= ds we have

(i) rds = rsd, and

(ii) rsds = rd + ξsrds.

Proof. Firstly c is in the centralizer if and only if the sum of terms from each

〈s〉-〈s〉-double coset commutes with T̃s.

Given any 〈s〉-〈s〉-double coset with d distinguished, if ds = sd then the double

coset consists of the elements d and ds, and each corresponding element T̃d and

T̃ds commutes with T̃s. Thus the sum rdT̃d + rdsT̃ds commutes with T̃s for any

rd, rds ∈ R.

If ds 6= sd, then the double coset sum is rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds. This

commutes with T̃s if and only if

T̃s(rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds) = (rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds)T̃s.

The left hand side is

rdT̃sd + rdsT̃sds + rsd(T̃d+ξsT̃sd) + rsds(T̃ds + ξsT̃sds) =

rsdT̃d + rsdsT̃ds + (rd + ξsrsd)T̃sd + (rds + ξsrsds)T̃sds,

and the right hand side is

rdT̃ds + rds(T̃d + ξsT̃ds)+rsdT̃sds + rsds(T̃sd + ξsT̃sds) =

rdsT̃d + (rd + ξsrds)T̃ds + rsdsT̃sd + (rsd + ξsrsds)T̃sds.

Equating coefficients of T̃d or T̃sds gives (i), and of T̃ds or T̃sd gives (ii). �

This lemma has some direct and useful consequences for elements of the centre,

and in particular the positive part of the centre.

(3.1.2) Corollary.

If h =
∑

w∈W rwT̃w ∈ Z(H) and u, u′ ∈ Cu, then ru = ru′ .

If in addition h ∈ Z(H)+, then for d ∈ D〈s〉,〈s〉, d 6∈ ZW (s) and r ∈ R+ we

have:

(i) rT̃d ≤ h =⇒ r(T̃d + T̃sds) ≤ h,
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(ii) rT̃ds or rT̃sd ≤ h =⇒ r(T̃ds + T̃sd + ξsT̃sds) ≤ h,

(iii) T̃sds ≤ h =⇒ T̃d + T̃sds ≤ h.

(iv) T̃w ≤ h =⇒ T̃C ≤ h where C is the conjugacy class containing w.

Proof. The first statement, and parts (i) and (ii) of the second statement are direct

consequences of the lemma. Parts (iii) and (iv) follow since the coefficient is one,

and we are dealing with positive elements. That is, if rsds = 1, then 1 = rd +ξsrds,

which implies rd ≤ 1 and ξsrds ≤ 1. The latter is impossible by definition, unless

rds = 0, giving rd = 1. This proves (iii), and (iv) is a generalization of this. �

(3.1.3) Proposition. Suppose w ∈ W is not minimal in its conjugacy class,

and h ∈ Z(H). Then the coefficient of T̃w in h is an R+-linear combination of

coefficients in R of strictly shorter elements in h. In fact, it is an R+-linear

combination of the coefficients in R of shortest elements of conjugacy classes.

Proof. The first statement follows from the first statement of (3.1.2), (1.1.3), and

(3.1.1)(ii). The second follows by induction. �

(3.1.4) Corollary. If there exists an element h ∈ Z(H), such that

(i) h0 = aT̃C for some a ∈ Z, and

(ii) there are no shortest elements from any conjugacy class in h − h0,

then h is the unique central element with these properties.

Proof. Suppose h′ ∈ Z(H) has the property that h′
0 = aT̃C and h′ − h′

0 has no

shortest elements from any conjugacy class. Then h′ − h ∈ Z(H) has no shortest

elements of any conjugacy class. Thus by (3.1.3), h′ − h = 0. �

We return to the centralizer of T̃s in the Iwahori-Hecke algebra. The minimal

R0-basis for ZR0W (s) is the set of s-conjugacy class sums, as noted at the start of

this section. We now provide the analogy in H.

(3.1.5) Definition. Let d be distinguished in 〈s〉d〈s〉. We define the following

four types of elements, and call them s-class elements because they correspond to
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s-conjugacy classes:

Type I, d ∈ ZW (s) : bI
d = T̃d,

bI
ds = T̃ds,

Type II, d 6∈ ZW (s) : bII
d = T̃d + T̃sds,

bII
ds = T̃ds + T̃sd + ξsT̃sds.

Note that every distinguished 〈s〉-〈s〉-double coset representative either com-

mutes with s or it doesn’t. Also note that when ξs = 0, these elements correspond

to sums of s-conjugate elements, and each element of an 〈s〉-〈s〉-double coset ap-

pears with coefficient one in exactly one s-class element.

Later we will use diagrams to represent the structure of central elements, and the

core “cells” of these diagrams will be those corresponding to s-class elements. The

type II s-class elements may be represented graphically by the following diagrams:

T̃d T̃ds
s

T̃sd

A
A
A
A
A

s

U ��
�
�
�
�

s

T̃sds

s

?
ξsT̃sds

bII
d bII

ds

Figure (3.1.6)

(3.1.7) Proposition. Let s ∈ S. The set of s-class elements {bI
d, b

I
ds, b

II
d , bII

ds | d ∈

D〈s〉,〈s〉} is an R-basis for ZH(T̃s).

Proof. On specialization to ξs = 0, each s-class element becomes a sum of s-

conjugate elements in the group algebra. Such sums are a basis for the centralizer

of s in the group algebra, and in particular are linearly independent. It follows

that the s-class elements are also linearly independent. It is also easy to check

that each s-class element is in the centralizer of T̃s.

Let h be an element of ZH(T̃s), and write rw ∈ R for the coefficient of T̃w in

h. Then, as in the proof for (3.1.1), we may write h as an R-linear combination
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of sums of terms corresponding to elements in an 〈s〉-〈s〉 double coset. If the

distinguished representative d of the double coset is in the centralizer ZW (s), then

rdT̃d + rdsT̃ds = rdb
I
d + rdsb

I
ds - a linear combination of s-class elements - so we

need only to check the case when d 6∈ ZW (s). Using the relations from (3.1.1), we

have the following:

rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds = rdT̃d + rdsT̃ds + rdsT̃sd + (rd + ξsrds)T̃sds

= rd(T̃d + T̃sds) + rds(T̃ds + T̃sd + ξsT̃sds)

= rdb
II
d + rdsb

II
ds

which is a linear combination of s-class elements. Thus we have that any h ∈

ZH(T̃s) may be written

h =
∑

d∈D〈s〉,〈s〉
d∈ZW (s)

(
rdb

I
d + rdsb

I
ds

)
+

∑

d∈D〈s〉,〈s〉
d6∈ZW (s)

(
rdb

II
d + rdsb

II
ds

)
,

where rw is the coefficient of T̃w in h. Thus h is a linear combination of s-class

elements, and spanning follows. �

(3.1.8) Corollary. Let D〈s〉,〈s〉 be the set of distinguished 〈s〉-〈s〉-double coset

representatives in W . Then rank ZH(T̃s) = 2|D〈s〉,〈s〉|.

Proof. For each double coset, there are two distinct basis elements for ZH(T̃s). �

An element of the centre is also an element of any centralizer in H, and in

particular the centralizers of elements T̃s for each s ∈ S. Using the same principle

as in Figure (3.1.6), it may thus be represented as a graph with terms of form mkT̃w

with mk ∈ Monk as nodes, and lines labelled by simple reflections connecting each

node with the other terms in its s-class element for each s ∈ S. This provides a

graphical way to check if an element is in the centre: ensure that for each s ∈ S

every node is part of a unique s-class element sub-graph.

(3.1.9) Lemma. The set of all s-class elements is the set ZH(T̃s)
+
min.

Proof. The s-class elements are all clearly primitive and minimal, so the converse

needs to be established.
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Let h ∈ ZH(T̃s)
+ be non-zero. We will show that h is greater than or equal to

some s-class element.

By (3.1.7), h is an R-linear combination of the s-class elements. It suffices to

show that it is in fact an R+-linear combination. Since h is non-zero, there must

be some s-class element b with non-zero coefficient r ∈ R. But if w is a shortest

element of the s-conjugacy class corresponding to b, then w only occurs in the

s-class element b (and with coefficient one in b), meaning that T̃w has coefficient

r in h. But since h is in ZH(T̃s)
+, the coefficient of every term T̃u for u ∈ W is

positive, and so r must be positive, proving the lemma. �

Proof of (1.2.1). To show N = NW,1(T̃w) is in the centre for w ∈ Cmin for some

conjugacy class C, we need to show N is in every centralizer ZH(T̃s) for s ∈ S.

Consider the left cosets 〈s〉d of 〈s〉 in W . Each left coset has two elements, d

and sd, where d is distinguished, and W is partitioned by these left cosets. Let

Ds be the set of distinguished left coset representatives of 〈s〉 in W . Then we may

write

N =
∑

u∈W

T̃uT̃wT̃u−1

=
∑

d∈Ds

(T̃dT̃wT̃d−1 + T̃sdT̃wT̃d−1s)

=
∑

d∈Ds

(T̃dT̃wT̃d−1 + T̃sT̃dT̃wT̃d−1 T̃s).

Each product T̃dT̃wT̃d−1 is an R-linear combination of terms T̃x for x ∈ W , and

so N is an R-linear combination of terms of form T̃x + T̃sT̃xT̃s, for x ∈ W . It now

suffices to check that for every x ∈ W , the sum T̃x + T̃sT̃xT̃s is in ZH(T̃s). This is

an elementary task, and can be checked by going through the possibilities for x is

the double coset 〈s〉x〈s〉, as we have done earlier in this section. �

3.2 The existence of the class elements

There are several ways to prove the existence of class elements - the elements

which will make up the minimal basis in 3.4 (definition given below). In [Fr],

the author used the existence of certain elements which had been found in type

An by Jones in [J2], and other elements found for general Weyl groups by Geck



17

and Rouquier in [GR]. We include those methods in Appendix A. However we

provide here an independent existence proof, which is more combinatorial. The

Jones methods used relative norms - a technique more difficult in types other than

An, as for example the conjugacy classes in Bn do not correspond so nicely with

parabolic subgroups. The Geck-Rouquier methods rely on character theory, an

approach which does not carry over to subalgebras.

The techniques in this section simply adopt the important characteristics of the

characters which are needed in [Fr] to obtain the upper bound, and generalizes

these to other functions satisfying these properties. This allows us potentially to

apply them to centralizers as well as the centre case.

We want to find elements of Z(H) which are analogous to conjugacy class sums

in the group algebra. The following elements will turn out to fill that role.

(3.2.1) Definition. If ΓC ∈ Z(H)+, then ΓC is called a class element if it satisfies

the following two properties:

(3.2.1.1) ΓC |ξs=0,s∈S = T̃C , and

(3.2.1.2) ΓC − T̃C contains no terms of shortest length in any conjugacy class.

The purpose of this section is to prove such elements exist. This in fact is already

known when W is a Weyl group, as mentioned several times above, through the

work of Geck and Rouquier [GR], however the methods we pursue are more general.

For some fixed h =
∑

w∈W rwT̃w ∈ Z(H), define the function h : H → R by

setting h(T̃w) = rw and extending linearly to the whole of H.

(3.2.2) Lemma. For all w, v ∈ W , h(T̃wT̃v) = h(T̃vT̃w).

Proof. We first prove for all w ∈ W when l(v) = 1, setting v = s ∈ S. It suffices

to consider w ∈ 〈s〉d〈s〉 for some d ∈ D〈s〉,〈s〉. Suppose firstly that ds = sd. Then

w = d or ds, and in fact we have T̃dT̃s = T̃sT̃d and T̃dsT̃s = T̃sT̃ds, so the lemma

follows trivially. So we may suppose ds 6= sd, and thus w = d, ds, sd, or sds. Then
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using (3.1.1) we have

h(T̃dT̃s) = h(T̃ds) = rds = rsd = h(T̃sT̃d)

h(T̃dsT̃s) = h(T̃d + ξsT̃ds) = h(T̃d) + ξsh(T̃ds) = rd + ξsrds = rsds = h(T̃sT̃ds)

h(T̃sdsT̃s) = h(T̃sd + ξsT̃sds) = rsd + ξsrsds = rds + ξsrsds = h(T̃sT̃sds).

The case w = sd is exactly symmetric to the w = ds case above.

Now suppose the lemma holds for all w ∈ W when l(v) ≤ k, and suppose

x ∈ W has length l(x) = k + 1. Then x = vs for some v of length k and

some s ∈ S, that is, l(x) = l(v) + l(s), and T̃x = T̃vT̃s. Let w ∈ W . Then

h(T̃wT̃x) = h(T̃wT̃vT̃s) = h(T̃sT̃wT̃v) = h(T̃vT̃sT̃w) = h(T̃xT̃w), with the second

and third equalities following since T̃wT̃v (resp. T̃sT̃w) are linear combinations

of elements T̃u ∈ H, and h is linear. So by induction we may pass T̃s and T̃v

respectively through terms in the products T̃wT̃v and T̃sT̃w respectively. This

proves the lemma. �

Remark. Note that here we could define hJ to correspond to a centralizer of a

parabolic subalgebra as follows. For h =
∑

w∈W T̃w ∈ ZH(HJ) we define the

function hJ : H → R setting hJ(T̃w) = rw. Then the above lemma would read

“for all w ∈ W , and v ∈ WJ , hJ (T̃wT̃v) = hJ(T̃vT̃w)”, and could be used in

analogous results for the remainder of this section.

It is well known that the terms corresponding to shortest elements of a conjugacy

class in a central element have the same coefficient. This has been proved by Ram

[R] and Starkey [C2] in type A, and by Geck and Pfeiffer [GP] for general Weyl

groups. However all these results used character theory, and part of our goal is

to introduce a setup generalizable to centralizers, which characters are not. Since

the function h is generalizable, it is worth following through this approach.

(3.2.3) Lemma. Let W be a Weyl group, and let C be a conjugacy class of W ,

with w,w′ ∈ Cmin. Then if h =
∑

w∈W rwT̃w ∈ Z(H) we have rw = rw′ .

Proof. By (1.1.2), we have the existence of a sequence of xi ∈ W and wi ∈ Cmin

such that w = w0, wn = w′, xiwix
−1
i = wi+1 and either l(xiwi) = l(xi) + l(wi)

or l(wix
−1
i ) = l(wi) + l(x−1

i ) for all 1 ≤ i ≤ n − 1. We may suppose without loss
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of generality that n = 1 and that there exists an x ∈ W such that xwx−1 = w′

and l(xw) = l(x) + l(w). Note that this also implies l(w′x) = l(w′) + l(x) since

xw = w′x and l(w) = l(w′).

It follows that T̃xT̃wT̃−1
x = T̃w′ , since T̃xT̃w = T̃xw = T̃w′x = T̃w′ T̃x. Thus

h(T̃w) = h(T̃xT̃wT̃−1
x ) = h(T̃w′)

with the first equality by (3.2.2), and the lemma follows. �

By (1.2.2), there exists a set of linearly independent elements of size |ccl(W )| in

the centre of H. By (3.2.3), the coefficients of the shortest elements of a conjugacy

class are the same in any central element, so for any hi ∈ Z(HF ) we may write

(∗) hi =
r∑

j=1

ai,j T̃Cj,min + Xi

where Xi ∈ HF contains no shortest elements of any conjugacy class with non-zero

coefficient, and ai,j ∈ F .

Let {hi =
∑r

j=1 ai,j T̃Cj,min + Xi ∈ Z(HF ) | Cj ∈ ccl(W )} be a set of linearly

independent central elements in HF .

(3.2.4) Lemma. Let hi be as above. Then the set {hi : 1 ≤ i ≤ r} is linearly

independent if and only if the set of vectors {ai = (ai,1, . . . , ai,r) | 1 ≤ i ≤ r} is

linearly independent.

Proof. Suppose that the ai are not linearly independent, and there is some relation
∑

i riai = 0 for some ri ∈ F . Then
∑

i riai,j = 0 for all j, and we have
∑

i

rihi =
∑

i

riai.(T̃C1,min , . . . , T̃Cr,min) +
∑

i

riXi

=
∑

i

riXi.

The left hand side of the equation is in the centre, so the right hand side is also.

This is a contradiction by (3.1.3), since
∑

i riXi has no shortest elements with

non-zero coefficient.

If on the other hand the hi are linearly dependent, we have
∑

i rihi = 0 for

some ri ∈ F , so

∑

i

riai.(T̃C1,min , . . . , T̃Cr,min) +
∑

i

riXi = 0,
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and again since Xi contains no shortest elements we may equate coefficients of

shortest elements in T̃Cj,min to give
∑

i riai,j = 0 for each j, so
∑

i riai = 0 and

the ai are linearly dependent. �

The following lemma may also be deduced from Geck and Rouquier’s work in

[GR], as shown in Appendix A.

(3.2.5) Lemma. For each conjugacy class C in a Weyl group W there exists

an element in the centre Z(HF ) which contains shortest elements from C with

coefficient 1, and no other shortest elements from any conjugacy class.

Proof. As pointed out above there exist r linearly independent elements {hi | 1 ≤

i ≤ r} in the centre of HF , and we can decompose them as in (∗). We can then

write the vector equation




h1
...

hr



 =






a1,1 . . . a1,r

...
...

ar,1 . . . ar,r











T̃C1,min

...
T̃Cr,min




 +





X1
...

Xr





where the ai,j are in F , and the Xi contain no shortest elements of any conjugacy

class.

By Lemma (3.2.4), the rows of the matrix A = (ai,j) are linearly independent,

so A is invertible, and we have

A−1





h1
...

hr



 =






T̃C1,min

...
T̃Cr,min




 + A−1





X1
...

Xr



 .

Each entry of the vector on the left hand side is in the centre, and so on the

right hand side we also have a vector whose entries are central elements. But each

of these on the right hand side is T̃Ci,min plus a linear combination of elements Xj

of HF , none of whom contain any shortest elements of any conjugacy class. �

(3.2.6) Theorem. For each conjugacy class C, there exists a class element ΓC ∈

Z(H)+. That is, ΓC |ξs=0 = T̃C and, ΓC − T̃C contains no shortest elements of

any conjugacy class. Furthermore, ΓC is the unique element of Z(H)+ satisfying

(3.2.1.1) and (3.2.1.2).

Proof. Recall from (3.1.3) that the coefficient of any element T̃w in a central ele-

ment h may be written as an R+-linear combination of the coefficients of shortest



21

elements in h. From (3.2.5), we have the existence of an element hC = T̃Cmin +Y ∈

Z(HF ) where Y contains no shortest elements of any conjugacy class. Since the

only shortest elements of any conjugacy class in hC have coefficient 1, (3.1.3)

implies every T̃w occuring in hC has coefficient in R+, so hC ∈ Z(H)+.

Suppose aT̃w ≤ hC with a an integer. That is, hC has non-zero specialization.

Then by (3.1.2)(iv), we have aT̃C′ ≤ hC where C ′ is the conjugacy class containing

w. So the shortest elements of C ′ appear in hC , which means C = C ′ since

hC contains shortest elements of only one conjugacy class, C. Further, the only

shortest elements in hC have coefficient one, so a = 1. Thus aT̃w = T̃w ≤ T̃C ,

and so the only terms with non-zero specialization in hC are from T̃C , giving

hC = T̃C + X, with X specializing to zero.

For uniqueness, suppose there exists a Γ′
C ∈ Z(H)+ satisfying (3.2.1.1) and

(3.2.1.2). Then ΓC − Γ′
C has no shortest elements of any conjugacy class with

non-zero coefficient. This contradicts (3.1.3) unless ΓC = Γ′
C . �

3.3 Constructing central elements - algorithms

Having shown the existence of the class elements, we now seek to describe how

to obtain them. This section will draw heavily on the s-class element basis for

the centralizer ZH(T̃s) found in 3.1. There are two algorithms we present - a

“relative” one and an “absolute” one, the difference being that the former needs

to refer to an upper bound. Under certain conditions, these will be shown to be

the same, giving us an effective absolute algorithm for calculating class elements,

independent of upper bounds.

Both these algorithms take an element of H+, and add terms to it until it is in

the centre. The key property that will emerge is that when one starts with the

sum of shortest elements in a conjugacy class, every addition is “same-length” or

“longer” (in a sense that will become clear). This is a very powerful property,

and we use it to draw further conclusions about the terms in the class elements in

section 6.1, when we look at the Brauer homomorphism.

Given the s-class element basis for the centralizer of T̃s in H for any s, we

may write a central element as a linear combination of s-class elements for any
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s ∈ S. Indeed, for any element h ∈ H+ and s ∈ S we may write h as a linear

combination hs of s-class elements, plus a linear combination h′
s of terms mkT̃w

which are neither R+-multiples of complete s-class elements (of type I) on their

own, nor can they be summed with any other terms in h′
s to create an R+-multiple

of an s-class element. In other words, hs is a maximal linear combination of s-class

elements less than or equal to h.

[Note that we do not claim that hs is the unique maximal linear combination

of s-class elements less than h. This is not possible in general, as for example we

could have ξsmkT̃sds + ξsmkT̃d + mkT̃sd + mkT̃ds ≤ h for some d ∈ D〈s〉,〈s〉 and

mk ∈ Monk, and then either ξsmk(T̃d + T̃sds) or mk(T̃ds + T̃sd + ξsT̃sds) are s-class

elements which could be put into hs.]

Having decomposed h ∈ H+ in such a manner into h = hs + h′
s, we may then

add terms to complete the s-class elements containing the terms in h′
s. That is,

we may add terms to h to create a new element (say h̄ ≥ h) which is a linear

combination of s-class elements. In other words, h̄ is a minimal element of ZH(T̃s)

greater than or equal to h. (Note again we do not claim uniqueness for such a

minimal centralizer element greater than h). For all terms in h′
s not of form mkT̃sds

(for d ∈ D〈s〉,〈s〉, mk ∈ Monk) the added terms will in fact be unique, but the case

of mkT̃sds with k ≥ 1 could be considered either as part of the s-class element bII
d

or bII
ds.

This describes the nucleus of an algorithm for constructing a positive central

element containing a given positive element. We could continue to construct ele-

ments of ZH(T̃s) corresponding to different s ∈ S by adding more and more terms

until we (hopefully) eventually create an element in the centralizer of all T̃s for

s ∈ S - that is, in Z(H). To ensure the algorithm stops, however (and does not

continue to add elements ad infinitum), we need to either: ensure that terms of

form mkT̃sds for d ∈ D〈s〉,〈s〉 never occur in h′
s for any s in S and for any stage

in the process (or define the algorithm more closely to ensure this); or provide an

upper bound in Z(H) which controls the additions to h - and this we will further

look at in definition (3.3.1) below.

For any h ∈ H+ we can find a positive central element c greater than h (for
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example, h ≤ NW,1(h) ∈ Z(H)+ - see (1.2.1) or [J2] for a definition). Then we

can apply the latter approach to ensure we can always construct a central element

greater than or equal to h and less than or equal to c, no matter in what order

of additions we proceed. If we need to complete an s-class element for which

ξsmkT̃sds is in h, we need to choose whether to consider it part of bII
d or bII

ds - in

other words, whether to add ξsmkT̃d or mk(T̃sd + T̃ds). We can decide this on the

basis of which is less than c−h ∈ H+. Then our new element will remain less than

or equal to c. If both options (either ξsmkT̃d or mk(T̃ds + T̃sd)) are less than c−h,

the choice can be arbitrary. Terms other than ξsmkT̃sds are in uniquely defined

s-class elements, and so a choice will never need to be made (see Lemma (3.1.2)(i)

and (ii)).

Suppose h = hs + h′
s ∈ H+, with hs a maximal element of ZH(T̃s) less than

h. Let ms be the length of the shortest term in h′
s (for non-zero h′

s). We now

formalize the above with the following definition:

(3.3.1) Definition. Let h ∈ H+, with h ≤ c for some c ∈ Z(H)+. Define the

algorithm Bc to conduct the following sequence of procedures:

(i) split h into h = hs + h′
s for each s ∈ S with hs maximal in ZH(T̃s) less than

or equal to h;

(ii) if h′
s=0 for all s ∈ S, stop;

(ii)′ otherwise, evaluate ms for each s, and choose s ∈ S such that ms is

minimal;

(iii) add terms from c−h which complete the s-class elements containing terms

in h′
s of length ms.

(iv) declare the new element to be Bc(h), and repeat from (i) with new element.

Note that here we do not make h into an element of a centralizer of T̃s for some

s immediately. We find the shortest term in h which is not in a complete s-class

element for some s ∈ S, and add the necessary terms to make that particular

s-class element complete. The purpose of this aspect of the definition is that later

we will use induction on the length ms of the shortest term in an incomplete s-class

element. This will in fact allow us to ensure (by controlling h and the element c)
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that we never complete the s-class element of a term of form rT̃sds in h′
s for some

d ∈ D〈s〉,〈s〉.

An immediate consequence of the definition is the following.

(3.3.2) Lemma. Let h ≤ c ∈ Z(H)+. Suppose that after n iterations of Bc

the shortest term of Bn
c (h) in an incomplete s-class element for some s ∈ S has

length ms in Bn
c (h). Then every element of length < ms in Bn

c (h) is in a complete

s-class element, for all s ∈ S.

Our main aim is to construct class elements - elements of the centre which

specialize to the conjugacy class sum T̃C , and which contain no other shortest

elements of any conjugacy class. The existence of such elements we have shown

in section 3.2. We now show that using the class elements ΓC as upper bounds,

we can start the algorithm on T̃C and will never need to add shorter elements.

With this, every step of the algorithm becomes uniquely defined, and it is never

necessary to make a choice relative to the upper bound. In other words, we will

show paradoxically that given the existence of certain types of element which we

can use as an upper bound, upper bounds are not necessary when starting with

T̃C .

(3.3.3) Proposition. The algorithm Bi
ΓC

(T̃C) never needs to refer to the upper

bound ΓC for any i ∈ N.

Proof. There is only need to refer to the upper bound if it is necessary at some

point to decide whether to consider an element of form ξsmkT̃sds (for some d ∈

D〈s〉,〈s〉) as part of the s-class element bII
d or bII

ds. That is, we will need to refer to the

upper bound if it is necessary at some point to add a shorter element or elements.

We claim that under the conditions of the proposition it is never necessary to add

shorter at any point in the construction, and we prove this by induction on the

number of repeats of BΓC
. If there is ever a need to add shortest elements of a

conjugacy class at some point in the algorithm, then we have a contradiction since

there are no shortest elements in ΓC − T̃C .

Consider the first additions made to T̃C via BΓC
. Since for any s ∈ S, T̃C

may be written as a linear combination of sums of s-conjugate elements for s ∈ S,
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the only s-class elements which could possibly be incomplete are those of type

bII
ds = T̃ds + T̃sd + ξsT̃sds for some d ∈ D〈s〉,〈s〉. Thus the only additions to T̃C

will be of form ξsT̃sds for some s ∈ S and d ∈ D〈s〉,〈s〉, and these are uniquely

determined without reference to ΓC .

Suppose by induction that after k repeats of BΓC
, no shorter additions have

been made. Equivalently, no choice has been made at any point in the construction

so far: no reference to ΓC has been required.

Then all terms of length shorter than ms in Bk
ΓC

(T̃C) are in complete s-class

elements for all s ∈ S (as pointed out in Lemma (3.3.2)). Now suppose a shorter

addition were required to complete the s-class element containing ξsmiT̃w of length

l(w) = ms in Bk
ΓC

(T̃C) for some s ∈ S. Then clearly w = sds for some d ∈ D〈s〉,〈s〉,

and we will need to add either ξsmiT̃d or mi(T̃ds + T̃sd). The added element, being

strictly shorter, will also reduce ms for Bk+1
ΓC

(T̃C), since there were no elements

of that length or shorter incomplete in Bk
ΓC

(T̃C). (Note that if ξs is not a factor

of the coefficient r of T̃sds in Bk
ΓC

(T̃C), then it must be in the s-class element

rT̃d + rT̃sds, so we would need to add rT̃d).

We will then need to add all of ξsmiT̃Cd
d

(resp. miT̃Cds
ds

) if ξsmiT̃d (resp. mi(T̃ds+

T̃ds)) is added, by (3.3.1), without increasing ms. If d 6∈ Cd,min (resp. ds 6∈

Cds,min), then by (2.2.3) there is an element u of Cd
d (resp. Cds

ds ) which is of form

u = tdt for some t ∈ S and d distinguished. Thus if d (resp. ds) is not minimal

in its conjugacy class, we will require further strictly shorter additions via the

algorithm. If d or ds is minimal, we have a contradiction since ΓC − Bk
ΓC

(T̃C)

contains no shortest elements with non-zero coefficient.

These shorter additions will continue, so long as d 6∈ Cmin (resp. ds 6∈ Cmin).

Thus, in a finite number of steps (since all of Cd (resp. Cds) will be added in

a finite number of steps), we will add shortest elements of some conjugacy class,

which is a contradiction.

Thus there is never a need to add strictly shorter elements at any point in the

algorithm, and hence we never need to refer to the upper bound ΓC . �

Thus we have that under the condition that we start with T̃C , the algorithm

is well defined without reference to any upper bound at all. This motivates us to
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make the following definition of a simpler “absolute” algorithm.

(3.3.4) Definition. Let h ∈ H+. Define the algorithm A to conduct the following

procedures.

(i) split h into h = hs + h′
s for each s ∈ S such that hs is maximal in ZH(T̃s)

less than or equal to h;

(ii) if h′
s=0 for all s ∈ S, stop;

(ii)′ otherwise evaluate ms for each s such that h′
s 6= 0, and choose s ∈ S such

that ms is minimal;

(iii) add terms to h which complete the s-class elements of those terms in h′
s

of length ms;

(iv) declare the new element to be A(h), and repeat from (i) with the new

element.

(3.3.5) Theorem. Let C be a conjugacy class in W . Then the algorithm Ai(T̃C)

is well defined for all i ∈ N;

Proof. For A to be well-defined we need to show that it does not add shorter at

any point. But the algorithms A and B are identical if B does not refer to an

upper bound, and we have shown (in (3.3.3)) that this is the case when it is started

on T̃C . Thus A does not add shorter at any point when started on T̃C . �

(3.3.6) Remark. It is sufficient to start A on the sum of elements of Cmin, since

by (1.1.2) every element of C can be obtained from a shortest element by a non-

decreasing series of conjugations by simple reflections. Examples of the algorithm

for types B2, A3, B3 and A4 are given in Chapter 5.

The point of the algorithm is that it provides us with a means of calculating

these elements ΓC , as shown in the following corollary.

(3.3.7) Corollary. An(T̃Cmin) = ΓC for some integer n.

Proof. From (3.3.5) and the remark above, there exists an integer n for which

An(T̃Cmin) is well defined and in the centre, and less than ΓC . By the minimality

of ΓC , we must have An(T̃Cmin) = ΓC . �
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Remark. In order to use characters to calculate a primitive minimal positive cen-

tral element, as done in other approaches to the question, one must calculate the

coefficient of T̃w for every w in W . The algorithm A has the computational ad-

vantage that one only calculates coefficients for those terms whose coefficient is

non-zero.

3.4 The minimal basis

(3.4.1) Lemma. If w ∈ Cmin and rT̃w ≤ h ∈ Z(H)+, then rΓC ≤ h.

Proof. By (3.2.3) we have rT̃Cmin ≤ h. The algorithm A adds only same-length

or longer when started on T̃Cmin , by (3.3.5), and by (3.1.2) all such additions

are implications inside a central element. So, the same series of additions we

would make if building rΓC from rT̃Cmin becomes a series of implications, giving

us rΓC ≤ h. �

(3.4.2) Proposition. If W is a Weyl group, then the set of class elements is the

set of primitive minimal positive central elements of H. That is,

Z(H)+min = {ΓC | C ∈ ccl(W )}.

Proof. We will simply show that for any h ∈ Z(H)+ which is non-zero, there exists

a class element ΓC such that rΓC ≤ h for some r ∈ R+.

Since h is non-zero, by (3.1.3) there is a shortest element w of some conjugacy

class C such that T̃w has non-zero coefficient r ∈ R+ in h. Then by (3.4.1) we

must have rΓC ≤ h. This completes the proof. �

(3.4.3) Theorem. Z(H)+min is an R-basis for Z(H).

Proof. The linear independence of the elements in Z(H)+min can be seen by spe-

cializing to ξs = 0 for all s ∈ S using the same inductive argument as in (1.2.2).

It remains to show spanning. We begin by showing that Z(H)+ is spanned by

the set Z(H)+min over R+.

Let h ∈ Z(H)+. If h ∈ Z(H)+min, then we are done, so suppose otherwise. Then

h is either not minimal, or is minimal with a factor of mi for some monomial mi.
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If the latter, then we are done, as h is an R+-multiple of an element of Z(H)+min.

If the former, then there exists a minimal element a1 ∈ (Z(H)+,≤) such that

0 6= a1 < h. Let k ∈ N be maximal such that mk is a factor of a1. Then we can

write a1 = mka′
1, with a′

1 ∈ Z(H)+min.

Then h = h1 + mka′
1, where h1 ∈ Z(H)+, and h1 < h.

We can now repeat the process for h1, removing an R+ multiple of an element

of Z(H)+min and staying in Z(H)+. Thus we may continually reduce h by non-

trivial multiples of elements of Z(H)+min. This sequence of reductions will finish in

a finite number of steps, as h ∈
∑

w∈W

[ ⊕

j∈N,mj∈Monj
Nmj

]
T̃w, giving us h as an

R+-linear combination of elements of Z(H)+min.

Now suppose h ∈ Z(H). Then h = h+ + h−, where h+ ∈ H+, and −h− ∈ H+.

Choose w ∈ W such that l(w) is minimal for the terms in h−. Then w ∈ Cmin for

some conjugacy class C of W . If T̃w has coefficient −r in h− for some r ∈ R+,

then so does T̃Cw,min , by (3.2.3), because they have the same coefficient in h. If we

then add rΓC to h, then −rT̃w is no longer a term of h+ rΓC . We may proceed in

this way to remove all negative terms in h, by adding an R+-linear combination

of the ΓC , giving us

h +
∑

C

rCΓC ∈ Z(H)+

for some coefficients rC in R+.

Then by our above work, we may write h +
∑

C rCΓC as an R+-linear combi-

nation of the ΓC also, so that h +
∑

C rCΓC =
∑

C r′CΓC , giving us

h =
∑

C

(r′C − rC)ΓC ,

so that h is in the R-span of the class elements. �

We can now collate these results into a proof of our main theorem for centres,

in the case that W is a Weyl group:

Proof of (2.2.1). (i) is (3.4.3), and (ii) is (3.4.2) and (3.2.6). �

3.5 Remarks

All results of the past chapter have been stated for centres when W is a Weyl
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group, as this is the most important case, and in the case of conjugacy classes we

have the result of Geck and Pfeiffer (1.1.2) to help us.

However, as commented before, many of the results are valid for J-conjugacy

classes, with J ⊆ S. Specifically, all results of this chapter are valid for J-conjugacy

classes and centralizers ZH(HJ) if a result analogous to (1.1.2) can be proved.

Similarly, if W is non-crystallographic, we need an result analogous to (1.1.2) to

deal with this case.

For example, if the existence of an element ΓC ∈ ZH(HJ) could be shown, with

the properties that it specialized to T̃C, and contained no other shortest elements,

then the algorithms of 3.3 can be defined relative to such an element using s-class

elements for s ∈ J and the rest of that section follows. The only external result

needed in section 3.2 is (1.1.2).

In the next chapter we prove analogies to (1.1.2) for certain cases of J-conjugacy

classes in types A and B, in chapter 5 for some non-crystallographic types, and

for some cases of small J , and in 6.4 we make a conjecture on a complete gener-

alization.

3.6 Reverting to a basis over Z[q, q−1]

We now demonstrate how to obtain the analogous basis for the centre over

Z[q, q−1]. Of course one can immediately obtain corresponding central elements

over Z[q1/2, q−1/2] by setting q = qs for all s ∈ S, and substituting ξs = q1/2−q−1/2

and T̃w = q−
l(w)

2 Tw in ΓC for each conjugacy class C and s ∈ S. We will show that

these are either over Z[q, q−1] or are q−1/2-multiples of elements over Z[q, q−1]. We

begin with a result on the coefficients of terms in ΓC :

(3.6.1) Lemma. Suppose miT̃w ≤ ΓC for some monomial mi of order i in the ξs

and some conjugacy class C. Then

(i) i is even if and only if l(w) = lC + 2k for some integer k ≥ 0, and

(ii) i is odd if and only if l(w) = lC + 2k + 1 for some k ≥ 0.

Furthermore, we always have i ≤ l(w) − lC .

Proof. Consider how additions of terms of different lengths and different coeffi-

cients may arise due to the algorithm. The only way the order of the coefficient
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is increased is by adding ξsrT̃sds to complete the s-class element rbII
ds (for r ∈ R),

and this addition is also the only way the length of the element can be increased

by an odd number - one. All other completions (for s-class elements bII
d , or of form

T̃ds in bII
ds) maintain the power of ξs and add terms of length two greater than that

already present.

Thus, even (resp. odd) orders of the monomial coefficient and terms of length

an even (resp. odd) difference from lC arise only by an even (resp. odd) sequence

of bII
ds completions of form ξsT̃sds (interspersed perhaps with bII

d completions, which

do not alter the coefficient).

An increase by one in the order of the monomial coefficient are linked to an in-

crease by one in the length of the word. Thus the maximum order of the monomial

possible in the coefficient of T̃w would be if we were to increase the order by one

for every increase by one in word length, from the shortest word in C up to the

addition of miT̃w. This gives a maximum increase in the order of the coefficient

(from order zero - a coefficient of one) of l(w) − lC . �

If we write ΓC,q for the image of ΓC in the injection H → Hq → HZ[q1/2,q−1/2]

(defined by setting ξs = q1/2 − q−1/2 and T̃w = q−
l(w)

2 Tw), then we have the

following consequence of the lemma:

(3.6.2) Proposition. If lC is even, then ΓC,q ∈ HZ[q,q−1]. If lC is odd, then

q−1/2ΓC,q ∈ HZ[q,q−1].

Proof. Every term in ΓC is of form miT̃w which gives (q1/2 − q−1/2)iq−l(w)/2Tw in

ΓC,q.

If lC is even, then by (3.6.1) we will have either i even and l(w) even, or i odd

and l(w) odd. In either case we have i + l(w) even, and so

(q1/2 − q−1/2)iq−l(w)/2 = q−i/2(q − 1)iq−l(w)/2

= q−
1
2 (i+l(w))(q − 1)i ∈ Z[q, q−1].

If lC is odd, again by (3.6.1) we have either i even and l(w) odd, or i odd and

l(w) even. Then in either case we have i + l(w) odd, and so

q−1/2(q1/2 − q−1/2)iq−l(w)/2 = q−1/2(1+i+l(w))(q − 1)i ∈ Z[q, q−1],

which completes the proof. �
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(3.6.3) Corollary. The set { ΓC,q | C ∈ ccl(W ), and lC even } ∪ { q−1/2ΓC,q |

C ∈ ccl(W ), and lC odd } is a Z[q, q−1] basis for Z(HZ[q,q−1]).
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Chapter 4

Centralizers of principal parabolic subalgebras

We devote this chapter to proving an analogy of (2.2.1) in certain cases of

centralizers ZH(HJ), for J ⊆ S. Specifically, we deal here with when W is of type

A or B, and the subset J of S is “principal”.

As pointed out in 3.5, the remaining step in this agenda is to prove an analogy

of (1.1.2) for the J-conjugacy classes in the above cases. The challenge in proving

such an analogy in general is that for a J-conjugacy class C contained in the double

coset WJdWJ , we need to describe how d ∈ DJ,J interacts with the elements of

J . That is, for which si and sj in J we have sid = dsj . The use of “chains” is a

natural tool to help describe this, and in the principal case we are able to describe

this interaction explicitly.

4.1. Chains in Weyl groups of types A and B

We will use the following notation for the Weyl groups of types A and B:

s1 s2 sn
An : • • . . . •

t s1 s2 sn
Bn+1 : •=========• • . . . •

We denote by Wi the subgroup of W generated by all simple reflections to the

left of si in the Dynkin diagram, including si, so that Wi = W (Ai) or W (Bi+1).

We use this notation to avoid the need to differentiate the cases at s0. We will

also need the convention that W0 = 1 in type An, and 〈t〉 in type Bn, and if i < 0,

then Wi = 1 in all cases. Similarly, for convenience s0 will denote 1 in type An

and t in type Bn. So Wi is a principal parabolic subgroup of W .

Define the following elements, for 0 ≤ i < j ≤ n:

ri,j = sisi+1 . . . sj−1sjsj−1 . . . si+1si,

rj,i = sjsj−1 . . . si+1sisi+1 . . . sj−1sj ,

We will write ri,t for ri,0 = sisi−1 . . . s1ts1 . . . si−1si in type Bn.

The definitions of primitive and elementary chains, sources, and targets given

below are due to Brieskorn and Saito ([BS]), and have been translated by Clare
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Coleman, Ruth Corran, John Crisp, David Easdown, Bob Howlett, David Jackson,

and Arun Ram in [CCCEHJR].

Define an si-chain to be a reduced word representing an element w ∈ W such

that siw = wsj for some sj ∈ J . We say w has source si and target sj .

An si-chain w of target si is said to be primitive if every simple reflection in the

reduced expressions of w commutes with si. Note that the set of simple reflections

forming each reduced expression for w is the same, so this definition makes sense.

An si-chain w of target sj is said to be elementary if it contains no primitive

si-chains, and may not be written as a product of shorter elementary chains.

Some preliminary facts from [BS] are:

(4.1.1). If w ∈ W satisfies siw = wsj for some si, sj ∈ S, then w has a reduced

expression as a product of primitive and elementary chains.

(4.1.2). The only elementary si-chains in a Coxeter group W are products of

form sjsisj . . . (where there are < msisj terms in the product) with msisj ≥ 3.

We will represent an si-chain w of target sj by si
w
→sj . For types A and B we

have the following summary of elementary si-chains for 1 ≤ i < n:

si
si+1si
−→ si+1,

si+1
sisi+1
−→ si, and

t
s1ts1−→ t and s1

ts1t
−→ s1 in type B.

Clearly most of these cases have different source and target (the exception being

those in type B around the generator t). We will introduce a convenient shorthand

by saying an elementary chain goes “up” if its target is further to the right of the

Dynkin diagram (as drawn above) than its source, and “down” if its target is to

the left of its source.

Given that we may decompose any chain w into a sequence of primitive and

elementary chains, we may define a sequence consisting of the source of w followed

by the targets of the elementary chains in w. We will call this sequence the

target sequence. Adjacent entries of the target sequence will vary by at most one

generator, since the elementary chains go up or down by at most one generator. If

w is an si-chain of target sj , then its inverse w−1 := wrev is an sj-chain of target si.
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For example, in type B, the reduced word s2s3s1s2ts1ts2s1 is a chain of source s3

and target s2, and the corresponding target sequence is [s3, s2, s1, s1, s2, s3]. One

property of the target sequence for an si-chain w of target sj is that the sequence

in reverse order is the target sequence for wrev.

An element si of the target sequence is called a local minimum if the first distinct

elements to either side of si are both greater than si (in the order induced by the

Dynkin diagram). Similarly, a local maximum is an element of the target sequence

greater than the first distinct elements to either side of it.

(4.1.3) Remark. In the case of primitive si-chains, note that the set of all primitive

si-chains is Wi−2 × 〈si+2, . . . , sn〉.

We start with a couple of results for certain chains in Weyl groups of type A

and B. The following lemma shows that any local minimum which is not s1 in

type B can be transformed using the Coxeter relations into a local maximum.

(4.1.4) Lemma. Suppose si 6= s2 in type B. If w ∈ W (B) has an expression as

an si-chain going down to si−1 and back up to si then it has an expression going

first up to si+1 and then back down to si.

Proof. Let w be such an si-chain. Then because si−1 is not s1 in type B, there are

no elementary si−1-chains of target si−1, and so w has target sequence [si, si−1, si].

The lemma claims that if we assume that si−1 is not s1 in type B, then we can

rewrite w in another reduced form having target sequence [si, si+1, si].

Between each element of the target sequence there is exactly one elementary

chain, so we may write w as the product of chains

w = C1C2C3C4C5

where C2 is an elementary si-chain of target si−1, C4 is an elementary si−1-chain

of target si, C1 and C5 are primitive si-chains, and C3 is a primitive si−1-chain.

We immediately have C2 = si−1si, and C4 = sisi−1, and for the primitive chains,

we have C1, C5 ∈ Wi−2 × 〈si+2, . . . , sn〉. Then all primitive si−1-chains are in

Wi−3 × 〈si+1, . . . , sn〉, where we let Wi−3 = 1 if i − 3 < 0 in all cases. But since

Wi−3 commutes with C2 and C4, we may write w in the following form:

w = w1si−1siw2sisi−1w3,
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where w1, w3 ∈ Wi−2 × 〈si+2, . . . , sn〉 and w2 ∈ 〈si+1, . . . , sn〉.

Now the subgroup 〈si+1, . . . , sn〉 is isomorphic to the Coxeter group of type

An−i, under the correspondence sk ↔ sk−i, so we may write any element of

〈si+1, . . . , sn〉 in reduced form with a single occurence of si+1. This gives us

w2 = w′
2si+1w

′′
2 where w′

2, w
′′
2 ∈ 〈si+2, . . . , sn〉, and both these commute with the

elementary chains si−1si and sisi−1. So in fact we may write

w = w1w
′
2si−1sisi+1sisi−1w

′′
2w3.

Let C ′
1 = w1w

′
2, and C ′

5 = w′′
2w3. Both these are primitive si-chains. Then use of

the braid relation gives

w = C ′
1si+1sisi−1sisi+1C

′
5

which has target sequence [si, si+1, si], which proves the lemma. �

(4.1.5) Proposition. Let w be a chain going both up and down. Then

(i) in type A, w may be written with a unique local maximum or a unique local

minimum;

(ii) in type B, w may be written such that the only local minima are s1, and

between each such minimum is a unique local maximum.

Proof. In type A, the above lemma shows that every local minimum may be trans-

formed into a local maximum, and repeated applications of this lemma will elimi-

nate any local minima. It is easy to construct an algorithm to do this, for instance

by removing first the right-most local minimum, as done pictorially below:
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sk

sk−1
���1

si si
......

...1

PPPq
si−1

���1

sk

si+1
?

........ sk−1
���1

si
���1 PPPq

si
......

...1

?

.......
sk+1

sk
���1 PPPq

sk

si+1
......

...1

si
���1

Similarly, every local maximum may be transformed into a local minimum, because

in type A any subgroup Wi is also of type Ai.

For type B, simply apply the previous lemma to eliminate all local minima

between minima of s1, as with type A. �

The following lemma is trivial.

(4.1.6) Lemma. Let w be an si-chain of target si+k, for k ≥ 2, which only goes

up. Then

(i) we may write:

w = C1w
′C2

with w′ = (si+1si)(si+2si+1) . . . (si+ksi+k−1), C1 ∈ 〈si+2, . . . , sn〉 a primitive si-

chain, and C2 ∈ 〈s1, . . . , si+k−2〉 a primitive sk-chain, and

(ii) w′
rev is an sj-chain of target sj+2, for all i ≤ j ≤ i + k − 2.

We will need the following normal form for the longest word in Weyl groups

of type B. Note that the longest element u of any Coxeter group is the unique

element characterized by the property that l(su) = l(u) − 1 for all s ∈ S (see for

example [H;(1.8)])

(4.1.7) Lemma. The longest word in W (Bn+1) is

wn = rn,twn−1

= rn,trn−1,t . . . s1ts1t.
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Proof. The lemma is true for both B1 and B2, where the longest words are respec-

tively t and s1ts1t, so we assume inductively that it is true for n − 1. We need to

show that rn,twn−1 is longest in W (Bn+1). Note that rn,t ∈ ZW (Bn+1)(W (Bn)), so

rn,twn−1 = wn−1rn,t. Since wn−1 is longest in W (Bn), we have that l(swn−1) =

l(wn−1)−1 for all s ∈ {t, s1, . . . , sn−1}. Then we must also have l(swn) = l(wn)−1

for all s ∈ S \{sn}, by the previous two points. However l(snwn) = l(wn)−1 also,

since l(snrn,t) = l(rn,tsn) = l(rn,t)− 1 and wn−1 commutes with rn,t. Thus wn is

the longest word in W (Bn+1). �

4.2. Double cosets of principal parabolic subgroups

We now obtain some results specifically for those chains which are double coset

representatives of principal parabolic subgroups (or double coset representatives

which are also chains).

(4.2.1) Lemma. Let J be principal, and let d ∈ DJ,J be a chain. Then d must

start up and end down.

Proof. Let d ∈ DJ,J be an si-chain which starts down. Then we may write d =

C1C2 . . . , where C1 is a primitive si-chain, and C2 is an elementary si-chain of

target si−1. By (4.1.3) we must have C1 ∈ Wi−2×〈si+2, . . . , sn〉, and C2 = si−1si.

But since J is principal, Wi−2 ⊂ WJ , so we must have C1 ∈ 〈si+2, . . . , sn〉 if d is

to be distinguished. But then d = C1si−1si · · · = si−1siC1 . . . , and so d cancels

on the left with si−1 ∈ J , a contradiction. Similar working gives that the chain

must end down. �

(4.2.2) Proposition. Let J be principal, and let d ∈ DJ,J be an si-chain, for

1 ≤ i ≤ n. Then

(i) In type A, d is a primitive si-chain;

(ii) In type B, if d goes up and then down, it has a unique local maximum si+1,

and has target si.

Proof. (i) From (4.1.7), in type A we may write any non-primitive chain starting

down, and so by (4.2.1) the chain cannot be a distinguished double coset repre-

sentative.
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(ii) By (4.2.1), d must start up, and so it has a first point at which it goes down

- a first maximum.

The argument is the same for any maximum sm for m greater than or equal to

i + 2, so suppose that the maximum is si+2. Using (4.1.6), we may write

d = C1(si+1si)(si+2si+1)C2(si+1si+2)(sisi+1)C3

for some k ≤ i + 1, with C1 ∈ 〈si+2, . . . , sn〉 a primitive si-chain, C2 ∈ Wi a

primitive si+2-chain, and C3 ∈ 〈sk+2, . . . sn〉 a primitive sk-chain. We will look at

the structure of C2.

Since C2 is in W (Bi+1), we may think of it as a subword of the longest word

wi = ri,twi−1. Thus, to begin with, we can be sure that it is possible to write

C2 with at most two occurences of si. There must also be at least one such

occurence, since otherwise d would not be reduced (the si+1 on either side of C2

would commute with C2 and cancel). If it is not possible to write C2 with only one

occurence of si, then since C2 is a subword of wi, it must cancel on the left with

si. But si may be commuted through to the left of d, and we may thus assume

there is only one occurence of si in C2. Using the same logic, we may assume that

C2 can be written as a subword of (si−1 . . . s1ts1 . . . si)wi−1.

Further, we must have si−1si ≤ C2, since otherwise the si would be able to

commute to the left, leaving the si+1 on each side of C2 to cancel with each

other. Since d is distinguished and J is principal, we must then have either C2 =

(si−1si−2 . . . s1ts1 . . . si−2si−1)u or (si−1si)u, where u is a subword of wi−1.

We now have that d may be written either in the form

d = C1(si+1si)(si+2si+1)(si−1 . . . s1ts1 . . . si)u(si+1si+2) . . . (sksk+1)C3, or

d = C1(si+1si)(si+2si+1)(si−1si)u(si+1si+2) . . . (sksk+1)C3,

for u a subword of wi−1. In either case, we have si+1 commutes with u, and in fact

si+1 passes through to the left in both cases, emerging as si−1, which contradicts

that d is distinguished. Thus d goes up at most one at its leftmost end.

We now suppose that after going up exactly one, d goes down at least two steps.

Then we may write d = C1(si+1si)C2(sisi+1)(si−1si) . . . (sksk+1) . . . where k < i,
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and C2 ∈ Wi−1. Now we have slightly more control over C2, as any element of

Wi−2 will commute to the left and cancel, contradicting that d is distinguished.

Thus, looking at C2 as a subword of wi−1 = ri−1,twi−2, we have either C2 = ri−1,tu

or si−1u, for u a subword of wi−2. If the latter case, and C2 = si−1u, then we

would have
d = C1(si+1si)si−1u(sisi+1)(si−1si) . . .

= C1si−1sisi+1sisi−1u(si−1si) . . .

which cancels on the left with si−1 - a contradiction. Thus C2 = ri−1,tu in type

Bn+1. But ri−1,t is in the centralizer of W (Bi−1) in W (Bi). In particular, if u 6= 1

then d will cancel on the left by an element of J . Thus u = 1, and C2 = ri−1,t.

Thus (in type Bn+1),

d = C1(si+1si)ri−1,t(sisi+1)(si−1si) . . .

= C1ri+1,t(si−1si) . . .

= si−1siC1ri+1,t . . .

which is a contradiction. �

(4.2.3) Corollary. Let J be principal.

(i) If d ∈ DJ,J is in type B and is a non-primitive si-chain for 1 ≤ i ≤ n, we

may write

d = C1ri+1,tC2

where C1, C2 ∈ 〈si+2, . . . , sn〉.

(ii) Suppose d ∈ DJ,J is of type A or B, and W d
J ∩ WJ = WJ ′ . If s ∈ J ′ then

ds = sd.

Proof. (i) follows from the proof of (4.2.2). For (ii), it only remains to show for

s = t in type B. But in this case, the only elementary t-chain is s1ts1, and this

has target t. Thus any t-chain will have target t. �

(4.2.4) Theorem. Suppose W is of type A or B, J ⊆ S is principal, d ∈ DJ,J

and W d
J ∩ WJ = WJ ′ for some J ′ ⊆ J . Then J ′ is principal in S.

Proof. If si ∈ J ′, it means that d is an si-chain of target in J . To show the

corollary, it is sufficient to show that si ∈ J ′ implies si−1 ∈ J ′. In type A, this
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is clear, since if d is an si-chain then it is primitive, and so d ∈ 〈si+2, . . . , sn〉, by

(4.2.2)(i).

From (4.2.3), in type B, we have d = C1ri+1,tC2, where Cj ∈ 〈si+2, . . . , sn〉.

The result follows. �

4.3. Reducibility in J-conjugacy classes

We will show in this section that if J is a principal subset of S and W is of

type A or B, then all J-conjugacy classes of W are reducible. This provides a

generalization of (1.1.2) and consequently of a generalization of (2.2.1).

Now, we have shown that if W d
J ∩ WJ = WJ ′ and si ∈ WJ ′ for i ≥ 1, then si

commutes with d, and so do all sj for all j ≤ i.

(4.3.1) Lemma. Let W be of type A or B, let J ⊆ S be principal, let d ∈ DJ,J ,

and suppose W d
J ∩ WJ = WJ ′ . Then dw is shortest in its J-conjugacy class if and

only if w ∈ WJ is shortest in its J ′-conjugacy class.

Proof. Suppose dw is shortest in its J-conjugacy class, and w is not shortest in

its J ′-conjugacy class. Then there is an element u of WJ ′ with the property

that l(uwu−1) < l(w). But then udwu−1 = duwu−1, since d ∈ ZW (WJ ′), and so

l(udwu−1) = l(duwu−1) = l(d)+l(uwu−1) < l(d)+l(w) = l(dw) which contradicts

that dw is shortest in its J-conjugacy class.

On the other hand, suppose w is shortest in its J ′-conjugacy class, and let

u ∈ WJ be arbitrary. We may write u = u1u2 with l(u) = l(u1) + l(u2) where

u2 ∈ WJ ′ and u1 ∈ DWJ/WJ′ . Then udwu−1 = u1du2wu−1
2 u−1

1 , and so

l(udwu−1) = l(u1du2wu−1
2 u−1

1 )

= l(u1) + l(d) + l(u2wu−1
2 u−1

1 )

≥ l(u1) + l(d) + l(u2wu−1
2 ) − l(u−1

1 )

= l(d) + l(u2wu−1
2 )

≥ l(d) + l(w)

= l(dw)

since d is distinguished, and w is minimal in its J ′-conjugacy class. Thus dw is

minimal in its J-conjugacy class. �
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Now we give a generalization of (1.1.2)(i).

(4.3.2) Theorem. Let W be of type A or B, and let J be principal in S. Then

every J-conjugacy class in W is reducible.

Proof. We proceed by induction on the size of W .

Firstly we establish that the result holds for W1 = W (A1) and W (B2). In these

cases the solution for the centres (1.1.2) and the case |J | = 1 described in 3.1

provides the solution.

Suppose then that it holds for all Wi with i ≤ k. We need to show for Wk+1.

We may suppose that J ⊂ S, since the case where J = S is the case for conjugacy

classes, and has been proved by Geck and Pfeiffer (1.1.2).

The J-conjugacy classes partition a double coset WJdWJ , so for any J-conjugacy

class C we may take an arbitrary element w = adb for a, b ∈ WJ and d distinguished

and l(w) = l(a) + l(d) + l(b). Then to begin with we can conjugate w without

increasing length to give dba, with ba ∈ WJ .

Suppose W d
J ∩WJ = WJ ′ . Then J ′ is a principal subset of J by (4.2.4), and so by

our induction hypothesis the group WJ has the property that all its J ′-conjugacy

classes are reducible (WJ is a Weyl group of type Ai or Bi for i ≤ k).

Now if W d
J ∩ WJ = WJ ′ , then the shortest elements of C are (by (4.3.1) above)

of form dw where w is shortest in its J ′-conjugacy class.

Thus, since ba is reducible in its J ′-conjugacy class to the minimal element u,

say, and since sd = ds for all s ∈ J ′ (by (4.2.3)(ii)), the same series of conjugations

will reduce dba to du ∈ Cmin.

Thus C is reducible in Wk+1. �

The following is a generalization of (1.1.2)(ii).

(4.3.3) Theorem. Let W be of type A or B, and let J ⊆ S be principal. If w

and w′ are in Cmin for some J-conjugacy class C, then there exists a sequence of

xi ∈ WJ and wi ∈ Cmin such that w = w0, xiwix
−1
i = wi+1, and wn+1 = w′, with

either l(xiwi) = l(xi) + l(wi) or l(wix
−1
i ) = l(wi) + l(x−1

i ) for each i, 0 ≤ i ≤ n.

Proof. We proceed in a similar way to the previous theorem. It is easy to check
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for W1 = W (A1), or W (B2), so we may suppose inductively that it holds for all

Wi for i ≤ k < n.

Let us first let C be a J-conjugacy class, where |J | < k + 1, and let w = udu′

be the reduced expression of any shortest element of C, where d is distinguished in

WJwWJ . Then du′u−1 ∈ Cmin also, and l(du′u−1) = l(du′) + l(u). In other words,

for any element w = udu′ of Cmin we have that there exists a w′ = dv ∈ Cmin for

which the claim is satisfied. This reduces the problem to showing that any pair

dv and dv′ in Cmin have the required property.

Now, suppose W d
J ∩ WJ = WJ ′ , where J ′ is a principal subset of J (we have

shown this is always the case when J is principal in (4.2.4)). Then by (4.3.1), we

have dv ∈ Cmin implies v is minimal in its J ′-conjugacy class. Since J ′ ⊂ S, we

have the result by induction for v and v′ in WJ and the sequence of conjugations

by xi all in WJ ′ . It follows that the result holds for dv and dv′.

If J = k + 1, then J = S and this is a special case of (1.1.2)(ii). �

We have now shown a complete analogy of (1.1.2) in the case W is of type A or

B and J is principal. By the remarks in 3.5, we now have the following theorem.

(4.3.4) Theorem. The set ZH(HJ)+min is an R-basis for ZH(HJ) if H is of type A

or B, and J is principal. Further, the elements ΓC of ZH(HJ)+min are characterized

by the properties

(i) ΓC|ξs=0,s∈S = T̃C, and

(ii) ΓC − T̃C has no shortest elements of any J-conjugacy class.
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Chapter 5

Non-crystallographic types and examples

Theorem (1.1.2) was restricted to Weyl groups, so to extend our results to the

non-crystallographic cases it is necessary to prove an analogy for the conjugacy

classes in these cases. We deal firstly in this chapter with the case W is dihedral

(giving the cases of types A2 and B2 as examples), and W of type H3 is covered

in Appendix B.

We also provide a complete proof of the reducibility of J-conjugacy classes if

|J | = 2 and W is a Weyl group.

Finally in this chapter, we give some explicit examples of the minimal bases for

several centres - in types A3, A4, and B3.

5.1. The dihedral groups

Note that types A2, B2, and G2 are special cases of the dihedral groups, so this

section will deal with them as special cases, giving the minimal bases in types A2

and B2.

As a consequence of finding the minimal basis of the centre of H(I(n)) below,

we have the complete solution for all centralizers of parabolic subalgebras in the

dihedral case, since the only non-trivial parabolic subgroups of the dihedral group

are generated by a single simple reflection, and so are covered by the theory in

section 3.1.

The dihedral group of type I(n) has generators {s, t} with relations s2 = t2 =

(st)n = 1, frequently represented by the following Dynkin diagram.

s n t
• •

The conjugacy classes split into the case where n is even, and the case where n

is odd. Let us write n = 2v or n = 2v + 1.

(5.1.1) Proposition. Every conjugacy class in a dihedral group I(n) is reducible.

Proof. Consider first n = 2v. The longest word of I(n) is (st)v. There are v + 3

conjugacy classes, with representatives 1, s, t, (st)k for 1 ≤ k ≤ v. If we write Cw
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for the conjugacy class containing w ∈ I(n), we have

C1 = {1},

Cs = {(st)ks, (ts)lt | k ≤ v − 2 even, l ≤ v − 1 odd},

Ct = {(st)ks, (ts)lt | k ≤ v − 1 odd, l ≤ v − 1 even},

C(st)k = {(st)k, (ts)k} for k < v,

C(st)v = {(st)v}.

The classes C1 and C(st)v are singleton sets, so the theorem trivially holds. The

classes C(st)k for 1 ≤ k < v have only two elements in each, which are both

“minimal” in length in the class, so the proposition holds. Finally, every element

of Cs and Ct has a shorter conjugate by either s or t, except the minimal element

of the class, so the proposition holds here too.

If n = 2v +1, the longest word is (st)vs = (ts)vt, and there are v +2 conjugacy

classes with representatives 1, s, (st)k. The classes are

C1 = {1},

Cs = {(st)ks, (ts)lt | 0 ≤ k ≤ v, 0 ≤ l < v},

C(st)k = {(st)k, (ts)k} for 1 ≤ k ≤ v.

Again C1 is trivial, and each C(st)k contains only two elements of the same length.

As with the even case, every element of Cs has an s- or t-conjugate of strictly

shorter length, so the proposition holds. �

For σ ∈ S, we denote the subset of elements in Cσ of length greater than or

equal to i by Cσ,i.

Given (5.1.1), we may use the algorithm A to find the primitive minimal positive

central elements of the Iwahori-Hecke algebras of the dihedral groups. We provide

without proof the following set of elements of Z(H(I(n)))+min.

(5.1.2) Theorem. The following set of elements is the set of primitive minimal

positive central elements of the Iwahori-Hecke algebra of the dihedral group I(n),

and thus forms an R-basis for Z(H(I(n))):
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n = 2v even, 1 ≤ k ≤ v :

Γ1 = T̃C1 ,

Γσ = T̃Cσ for σ ∈ S,

Γ(st)k = T̃C
(st)k

+
∑

i>2k
σ∈S

ξσT̃Cσ,i ;

n = 2v + 1 odd, 1 ≤ k ≤ v :

Γ1 = T̃C1 ,

Γs = T̃Cs ,

Γ(st)k = T̃C
(st)k

+ ξs

∑

i>2k

T̃Cs,i .

Note that in the case n is odd, the generators s and t are conjugate, and so

ξs = ξt.

These elements may be compared with the similar R-basis for the centre found

by Fakiolas (in [Fa]) working over the ring Q[q], which we denote bw for w a

representative of the conjugacy class C. We have the following relations between

the elements in [Fa] (modified to be over R) and those above:

For n = 2v even, 1 ≤ k < v :

b1 = Γ1,

bσ = Γσ,

b(st)k = Γ(st)k − ξsΓs − ξtΓt,

b(st)v = Γ(st)v .

For n = 2v + 1 odd, 1 ≤ k ≤ v :

b1 = Γ1,

bs = Γs,

b(st)k = Γ(st)k − ξsΓs.

Type A2.

The Weyl group of type A2 is the dihedral group I(3), generated by the sim-

ple reflections s1 and s2 with relations s2
i = (s1s2)

3 = 1. It has six elements,

{1, s1, s2, s1s2, s2s1, s1s2s1}, and three conjugacy classes. Since s1 and s2 are

in the same conjugacy class, we write ξs1 = ξs2 = ξ. The conjugacy classes Ci

of W (A2) and the corresponding primitive minimal positive central elements are

given below:

C1 = {1},

Γ1 = T̃C1 ,

C2 = {s1, s2, s1s2s1},

Γ2 = T̃C2 ,

C3 = {s1s2, s2s1},

Γ3 = T̃C3 + ξT̃s1s2s1 .

Type B2.

The Weyl group of type B2 is the dihedral group I(4), and has eight elements

generated by the simple reflections {s, t} with relations s2 = t2 = (st)4 = 1. It
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has five conjugacy classes, but the only primitive minimal positive central element

which is not simply the conjugacy class sum corresponds to the class {st, ts}. We

show diagramatically the construction using the algorithm (note that sts com-

mutes with t, and tst with s, so that T̃sts (resp. T̃tst) is a t-class element (resp.

s-class element) on its own):

T̃st T̃ts

A
A
t

A
AU

QQQQs
QQQQs+����

t�
���

��
�
s
�
�

ξtT̃tst ξsT̃sts

5.2 Type H3

In this section, we extend (1.1.2) to type H3 by explicit calculation of the

conjugacy classes. We have not done this for H4, as explicit calculation gets a

touch difficult in a group of 14400 elements - H3 has only 120. However it seems

likely that one could use a computer algebra package such as Magma or GAP to

do similar calculations to those we have done below for H3. On the other hand

a more elegant proof may be obtainable using the embedding of H4 into E8 (see

[S]).

Here we write W = W (H3), with generators t, s1, and s2, and relations (ts1)
5 =

(s1s2)
3 = (ts2)

2 = s2
i = t2 = 1 for i = 1, 2. This can be represented by the

following Dynkin diagram:

•=========
5

• •
t s1 s2

We show in Appendix B the diagrams corresponding to conjugacy classes. The

nodes of the diagrams are elements of W , and there is an edge joining two nodes

when the nodes are conjugate by a simple reflections s. The edge joining them

then is given the label s.

Observation of the diagrams reveals the following analogy of (1.1.2):

(5.2.1) Lemma. Every conjugacy class C in the type H3 Coxeter group is re-

ducible. Furthermore, Cmin = Cw for any w ∈ Cmin in all conjugacy classes
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except C = Ct, in which case Cmin is partitioned by three such equivalence classes,

Cmin = Ct∪Cs1 ∪Cs2 , with (ts1ts1)t(s1ts1t) = s1, and (s1s2)s1(s2s1) = s2, where

l(ts1ts1t) = l(ts1ts1) + l(t) and l(s1s2s1) = l(s1s2) + l(s1).

By the results of chapter 3, and the remarks in 3.5, we have the following

extension of (2.2.1).

(5.2.2) Theorem. Let H be the Iwahori-Hecke algebra of type H3. Then the

class elements exist, the algorithm A is well-defined on the conjugacy class sum,

and the set Z(H)+min is an R-basis for Z(H).

5.3 The centralizer of two generators

In this section we prove analogous statements to (1.1.2) for the centralizer of

a parabolic subalgebra generated by only two elements. That is, if J ⊆ S, we

are dealing with the case |J | = 2. The proofs are entirely by a case-by-case

demonstration.

We will assume J = {s, t} ⊆ S, and the order of the product st is 2, 3, or 4. The

case (st)6 = 1 only occurs in the case J = S in type G2, and we omit (st)5 = 1,

which only occurs in types H3 and H4.

Whatever the order of st, there are at most three cases of the intersection

W d
J ∩ WJ , which can be either {1}, 〈s〉 or 〈t〉, or 〈s, t〉 = WJ . Note that we treat

the cases 〈s〉 and 〈t〉 as the same, since we have not imposed an order on s and

t. This approach simply categorizes the double coset representatives into three

different cases, which makes them easy to deal with. In theory, this approach can

be used for any sized J (we have already used it for |J | = 1), but the cases become

impractically numerous.

In each case, we will first list the {s, t}-conjugacy classes in the double coset

〈s, t〉d〈s, t〉, and then give the {s, t}-class element of ZH(H{s,t}) corresponding to

each {s, t}-conjugacy class, which has been calculated using the algorithm A. Oc-

casionally we will represent the calculation by a diagram to illustrate the process.

(5.3.1) (st)2 = 1, 〈s, t〉d ∩ 〈s, t〉 = {1}.
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The trivial intersection case is the case where there are no relations between d

and either s or t.

The {s, t}-conjugacy classes here are:

(1) {d, sds, tdt, stdts},

(2) {ds, sd, tsdt, tdst},

(3) {dt, td, stds, sdts},

(4) {dst, tds, sdt, std}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃sds + T̃tdt + T̃stdts,

(2) T̃ds + T̃sd + T̃tsdt + T̃tdst + ξ(T̃sds + T̃stdts),

(3) T̃dt + T̃td + T̃stds + T̃sdts + ξ(T̃tdt + T̃stdts),

(4) T̃dst + T̃tds + T̃sdt + T̃std + ξ(T̃stds + T̃stdt + T̃tdst + T̃sdst) + ξ2T̃stdts.

As an example of the calculation, number (2) can be represented by the diagram:

T̃ds T̃sd
HHsHHj

ξT̃sds

���s��

T̃tdst

t

?
T̃tsdt

t

?

HHsHHj
ξT̃stdts

t

?���s��

(5.3.2) (st)2 = 1, 〈s, t〉d ∩ 〈s, t〉 = 〈s〉.

In this case, the intersection 〈s〉 implies that d−1xd = s for some x ∈ {s, t}, so

we have either (i) ds = sd or (ii) ds = td.

(i) In the case that ds = sd we have the {s, t}-conjugacy classes:

(1) {d, tdt},

(2) {ds, tdts},

(3) {dt, td},

(4) {dst, tds}.

Then the {s, t}-class elements are

(1) T̃d + T̃tdt,

(2) T̃ds + T̃tdts,
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(3) T̃dt + T̃td + ξT̃tdt,

(4) T̃dst + T̃tds + ξT̃tdts.

(ii) In the case ds = td we have the {s, t}-conjugacy classes:

(1) {d, dst, sds, sdt},

(2) {sd, ds, dt, sdst}.

Then the {s, t}-class elements are:

(1) T̃d + T̃dst + T̃sds + T̃sdt + ξT̃sdst,

(2) T̃sd + T̃ds + T̃dt + T̃sdst + ξ(T̃sds + T̃dst + T̃sdt) + ξ2T̃sdst.

(5.3.3) (st)2 = 1, 〈s, t〉d ∩ 〈s, t〉 = 〈s, t〉.

Here we also have two cases. Either (i) sd = ds and td = dt or (ii) sd = dt and

td = ds.

(i) If sd = ds and td = dt the {s, t}-conjugacy classes are singleton sets: {d},

{ds}, {dt}, and {dts}, and the {s, t}-class elements are the single generators T̃d,

T̃ds, T̃dt, and T̃dts.

(ii) If sd = dt and td = ds there are two {s, t}-conjugacy classes {d, dst} and

{dt, ds}, and their corresponding {s, t}-class elements are T̃d + T̃dst and T̃ds + T̃dt +

ξT̃dts.

(5.3.4) (st)3 = 1, 〈s, t〉d ∩ 〈s, t〉 = {1}.

Here there are six {s, t}-conjugacy classes in the double coset:

(1) {d, sds, tdt, tsdst, stdts, stsdsts},

(2) {ds, sd, tdst, tsdt, stdsts, stsdts},

(3) {dt, td, sdts, stds, tsdsts, stsdst},

(4) {dts, sdt, tsd, tdsts, stsds, stdst},

(5) {dst, tds, std, sdsts, stsdt, tsdts},

(6) {dsts, sdst, tdts, tsds, stdt, stsd}.

Clearly (2) and (3) are equivalent and (4) and (5) are equivalent, under swapping

s and t. The corresponding {s, t}-class elements (ignoring equivalent ones) are:

(1) T̃d + T̃sds + T̃tdt + T̃stdts + T̃tsdst + T̃stsdsts,

(2) T̃ds + T̃sd + T̃tdst + T̃tsdt + T̃stdsts + T̃stsdts + ξ(T̃sds + T̃tsdst + T̃stsdsts),
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(4) T̃dts + T̃sdt + T̃tsd + T̃tdsts + T̃stdst + T̃stsds + ξ(T̃sdts + T̃tsdt + T̃stdsts +

T̃stsdts + T̃tsdsts + T̃stsdst) + ξ2T̃stsdsts,

(6) T̃dsts + T̃sdst + T̃tdts + T̃tsds + T̃stdt + T̃stsd + ξ(T̃tdsts + T̃stdts + T̃stdst +

T̃stsds + T̃tsdst + T̃tsdts + T̃stsdt + T̃stsdsts) + ξ2(T̃stdsts + T̃stsdts + T̃tsdsts +

T̃stsdst) + ξ3T̃stsdsts.

We will do (4) as a diagrammatical example:

T̃dts T̃sdt T̃tsd

@
@

s
@
@R 	�

�
s
�
� @

@
t
@

@R 	�
�

t
�

�

ξT̃sdts ξT̃tsdt

T̃tdsts

t

?
s - T̃stdst

� t T̃stsds

s

?

������������ HHHHHHHHHHHj
ξT̃stdsts

s

?
ξT̃tsdsts

?
ξT̃stsdts

?
ξT̃stsdst

t

?

HHHHHtHHHHHj

@
@

s
@
@R 	�

�
t
�

�

������s�����

ξ2T̃stsdsts

(5.3.5) (st)3 = 1, 〈s, t〉d ∩ 〈s, t〉 = 〈s〉.

Again, two cases: (i) ds = sd; and (ii) ds = td.

(i) The {s, t}-conjugacy classes are

(1) {d, tdt, stdts},

(2) {ds, tdst, stdsts},

(3) {td, dt, stsd, stdt, sdts, tdts},

(4) {dts, dst, tds, std, stsdt, tdsts}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃tdt + T̃stdts,

(2) T̃ds + T̃tdst + T̃stdsts,

(3) T̃dt + T̃td + T̃sdts + T̃stsd + T̃stdt + T̃tdts + ξ(T̃tdt + T̃stdst + T̃tsdts +2T̃stdts)+

ξ2T̃stdsts,
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(4) T̃dts + T̃sdt + T̃tsd + T̃std + T̃tdsts + T̃stdst + ξ(T̃sdts + T̃tdst + T̃tdts + T̃stsd +

T̃stdt + 2T̃stdsts) + ξ2(T̃tdsts + T̃stdst + T̃stdts) + ξ3T̃stdsts.

(ii) The {s, t}-conjugacy classes are:

(1) {d, sds, dst, tsdst, tsdts, sdsts},

(2) {ds, sd, dt, tsdt, sdts, tsdsts},

(3) {dts, sdt, tsd},

(4) {dsts, sdst, tsds}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃dst + T̃sds + T̃tsdst + T̃sdsts + T̃tsdts + ξT̃tsdsts,

(2) T̃ds + T̃sd + T̃dt + T̃sdts + T̃tsdt + T̃tsdsts + ξ(T̃sds + T̃dst + T̃sdsts + T̃tsdst +

T̃tsdts) + ξ2T̃tsdsts,

(3) T̃dts + T̃sdt + T̃tsd + ξ(T̃tsdt + T̃sdts + T̃tsdsts),

(4) T̃dsts + T̃sdst + T̃tsds + ξ(T̃tsdst + T̃tsdts + T̃sdsts) + ξ2T̃tsdsts.

The following is the diagramatical construction of (4):

T̃dsts T̃sdst T̃tsds

������s����� HHHHHtHHHHHj
ξT̃sdsts

s

?
t - ξT̃tsdts

� s ξT̃tsdst

t

?

HHHHHtHHHHHj ������s�����

ξ2T̃tsdsts

t, s

?

Note here that T̃dsts is a t-class element on its own, and T̃tsds is an s-class element

on its own.

(5.3.6) (st)3 = 1, 〈s, t〉d ∩ 〈s, t〉 = 〈s, t〉.

Two cases again: (i) sd = ds and td = dt; and (ii) sd = dt and td = ds.

(i) The {s, t}-conjugacy classes are:

(1) {d},

(2) {ds, dt, dsts},

(3) {dts, dst}.
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The corresponding {s, t}-class elements are:

(1) T̃d,

(2) T̃dt + T̃ds + T̃dsts,

(3) T̃dts + T̃dst + ξT̃dsts.

(ii) The {s, t}-conjugacy classes are:

(1) {d, dts, dst},

(2) {ds, dt},

(3) {dsts}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃dts + T̃dst,

(2) T̃dt + T̃ds + ξ(T̃dts + T̃dst),

(3) T̃dsts.

(5.3.7) (st)4 = 1, 〈s, t〉d ∩ 〈s, t〉 = {1}.

There are eight {s, t}-conjugacy classes:

(1) {d, sds, tdt, tsdst, stdts, stsdsts, tstdtst, ststdtsts},

(2) {ds, sd, tdst, tsdt, stdsts, stsdts, tstdtsts, ststdtst},

(3) {dt, td, sdts, stds, tsdtst, tstdst, stsdtsts, ststdsts},

(4) {dst, tds, std, sdsts, tstdt, tsdtsts, ststdts, stsdtst},

(5) {dts, sdt, tsd, tdtst, stsds, stdtsts, ststdst, tstdsts},

(6) {dsts, sdst, tsds, stsd, tdtsts, ststdt, stdtst, tstdts},

(7) {dtst, tdts, stdt, tstd, sdtsts, ststds, tsdsts, stsdst},

(8) {dtsts, sdtst, tsdts, stsdt, ststd, tdsts, stdst, tstds}.

Note that here, as in the (st)3 = 1 case, we have some symmetry between classes

(2) and (3), (4) and (5), and (6) and (7). Thus we will omit the obvious symmetric

cases in the {s, t}-class elements below:

(1) T̃d + T̃sds + T̃tdt + T̃tsdst + T̃stdts + T̃stsdsts + T̃tstdtst + T̃ststdtsts,

(2) T̃ds + T̃sd + T̃tdst + T̃tsdt + T̃stdsts + T̃stsdts + T̃tstdtsts + T̃ststdtst + ξ(T̃sds +

T̃tsdst + T̃stsdsts + T̃ststdtsts),

(4) T̃dst+T̃tds+T̃std+T̃sdsts+T̃tstdt+T̃tsdtsts+T̃ststdts+T̃stsdtst+ξ(T̃tdst+T̃stds+

T̃stdsts + T̃tstdst + T̃tstdtsts + T̃stsdtsts + T̃ststdtst + T̃ststdsts) + ξ2T̃ststdtsts,
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(6) T̃dsts + T̃sdst + T̃tsds + T̃stsd + T̃tdtsts + T̃ststdt + T̃stdtst + T̃tstdts + ξ(T̃sdsts +

T̃tsdst + T̃stsds + T̃tstdtst + T̃tstdsts + T̃stdtsts + T̃ststdst + T̃stsdsts + T̃tsdtsts +

T̃stsdtst+T̃ststdts+T̃ststdtsts)+ξ2(T̃tstdtsts+T̃stsdtsts+T̃ststdtst+T̃ststdsts)+

ξ3T̃ststdtsts,

(8) T̃dtsts + T̃sdtst + T̃tsdts + T̃stsdt + T̃ststd + T̃tdsts + T̃stdst + T̃tstds + ξ(T̃sdtsts +

T̃tsdsts + T̃tsdtst + T̃tdtsts + T̃stdsts + T̃stdtst + T̃stsdts + T̃stsdst + T̃tstdst +

T̃tstdts + T̃ststdt + T̃ststds + T̃stsdtsts + T̃tstdtsts + T̃ststdtst + T̃ststdsts) +

ξ2(T̃tsdtsts+T̃stdtsts+T̃stsdsts+T̃stsdtst+T̃tstdtst+T̃tstdsts+T̃ststdst+T̃ststdts+

2T̃ststdtsts) + ξ3(T̃stsdtsts + T̃tstdtsts + T̃ststdtst + T̃ststdsts) + ξ4T̃ststdtsts.

(5.3.8) (st)4 = 1, 〈s, t〉d ∩ 〈s, t〉 = 〈s〉.

As with the above, there are two cases: (i) ds = sd, and (ii) ds = td.

(i) The {s, t}-conjugacy classes are

(1) {d, tdt, stdts, tstdtst},

(2) {ds, tdst, stdsts, tstdtsts},

(3) {dt, td, dsts, stsd, tdtsts, stdtst, tstdts, tstdst},

(4) {dst, tds, std, dts, tdtst, tstdt, stdtsts, tstdsts},

(5) {dtst, tdts, stdt, tstd},

(6) {dtsts, tdsts, stdst, tstds}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃tdt + T̃stdts + T̃tstdtst,

(2) T̃ds + T̃tdst + T̃stdsts + T̃tstdtsts,

(3) T̃dt + T̃td + T̃dsts + T̃stsd + T̃tdtsts + T̃stdtst + T̃tstdts + T̃tstdst +ξ(T̃tdt + T̃stdts +

2T̃tstdtst + T̃stdtsts + T̃tstdsts) + ξ2T̃tstdtsts,

(4) T̃dst + T̃tds + T̃std + T̃dts + T̃tdtst + T̃tstdt + T̃stdtsts + T̃tstdsts + ξ(T̃dsts +

T̃tdst + T̃stds + T̃tdtsts + T̃stdsts + T̃stdtst + T̃tstdst + T̃tstdts + 2T̃tstdtsts) +

ξ2(T̃stdtsts + T̃tstdtst + T̃tstdsts) + ξ3T̃tstdtsts,

(5) T̃dtst + T̃tdts + T̃stdt + T̃tstd + ξ(T̃tdtst + T̃stdts + T̃tstdt + T̃stdtsts + T̃tstdtst +

T̃tstdsts) + ξ2T̃tstdtsts,

(6) T̃dtsts+T̃tdsts+T̃stdst+T̃tstds+ξ(T̃tdtsts+T̃stdsts+T̃tstdst+T̃stdtst+T̃tstdts+

T̃tstdtsts) + ξ2(T̃stdtsts + T̃tstdtst + T̃tstdsts) + ξ3T̃tstdtsts.
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The following is the diagramatical representation of the construction of (6) above,

noting we omit some horizontal lines for convenience:

T̃tstds T̃stdst T̃tdsts T̃dtsts

+����
t�

���
@

@
s
@

@R 	�
�

s
�

�
QQQQt

QQQQs
ξT̃tstdst

t

?
s - ξT̃tstdts ξT̃stdsts ξT̃stdtst

� s ξT̃tdtsts

t

?

A
A
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A
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�
s
�
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t
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ξ2T̃tstdsts ξ2T̃tstdtst ξ2T̃stdtsts
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(ii) The {s, t}-conjugacy classes are:

(1) {d, sds, dst, tsdst, sdsts, tsdtsts, stsdsts, stsdtst},

(2) {ds, sd, dt, sdts, tsdt, tsdtst, stsdts, stsdtsts},

(3) {dts, sdt, tsd, dtsts, stsds, sdtst, tsdts, stsdt},

(4) {dsts, sdst, dtst, tsds, stsd, sdtsts, tsdsts, stsdst}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃sds + T̃dst + T̃tsdst + T̃sdsts + T̃tsdtsts + T̃stsdsts + T̃stsdtst + ξT̃stsdtsts,

(2) T̃ds + T̃sd + T̃dt + T̃sdts + T̃tsdt + T̃tsdtst + T̃stsdts + T̃stsdtsts + ξ(T̃dst + T̃sds +

T̃tsdst + T̃sdsts + T̃stsdsts + T̃tsdtsts + T̃stsdtst) + ξ2T̃stsdtsts,

(3) T̃dts + T̃sdt + T̃tsd + T̃dtsts + T̃stsds + T̃sdtst + T̃tsdts + T̃stsdt +ξ(T̃sdts + T̃tsdt +

2T̃tsdtst + T̃sdtsts + 2T̃stsdts + T̃tsdsts + T̃stsdst + 2T̃stsdtsts) + ξ2(T̃tsdtsts +

T̃stsdtst + T̃stsdsts) + ξ3T̃stsdtsts,

(4) T̃dsts+T̃sdst+T̃dtst+T̃tsds+T̃stsd+T̃sdtsts+T̃tsdsts+T̃stsdst+ξ(T̃tsdt+T̃sdts+

2T̃tsdtst + 2T̃stsdts + T̃stsdst + T̃tsdsts + T̃sdtsts + 2T̃stsdtsts) + ξ2(T̃stsdsts +

T̃tsdtsts + T̃stsdtst) + ξ3T̃stsdtsts.

(5.3.9) (st)4 = 1, 〈s, t〉d ∩ 〈s, t〉 = 〈s, t〉.
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Either (i) ds = sd and dt = td or (ii) ds = td and dt = sd.

(i) The {s, t}-conjugacy classes are:

(1) {d},

(2) {ds, dtst},

(3) {dt, dsts},

(4) {dts, dst},

(5) {dtsts}.

Omitting case (3) which is symmetric to (2) under swapping s and t, we have

that the corresponding {s, t}-class elements are:

(1) T̃d,

(2) T̃ds + T̃dtst,

(4) T̃dts + T̃dst + ξ(T̃sts + T̃tst),

(5) T̃dtsts.

(ii) The {s, t}-conjugacy classes are:

(1) {d, dts, dst, dtsts},

(2) {ds, dt},

(3) {dsts, dtst}.

The corresponding {s, t}-class elements are:

(1) T̃d + T̃dts + T̃dst + T̃dtsts,

(2) T̃ds + T̃dt + ξ(T̃dts + T̃dst + T̃dtsts),

(3) T̃dsts + T̃dtst + ξT̃dtsts.

5.4 Types A3 and A4

Type A3.

Let W be the Weyl group of type A3, generated by s1, s2, and s3, with relations

s2
j = (s1s3)

2 = (sisi+1)
3 = 1 for j = 1, 2, 3 and i = 1, 2. The conjugacy classes of
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W are Cid = {1},

C12 = {s1s2, s2s1, s2s3, s3s2, s2s3s2s1, s1s2s3s2, s1s2s1s3, s1s3s2s1},

C1 = {s1, s2, s3, s1s2s1, s2s3s2, s1s2s3s2s1},

C13 = {s1s3, s2s1s3s2, s1s2s1s3s2s1},

C123 = {s1s2s3, s2s1s3, s1s3s2, s3s2s1, s1s2s1s3s2, s2s1s3s2s1}.

For simplicity of notation, we will write T̃si = T̃i, and as before we will write

T̃C for the conjugacy class sum. Note again (as with A2, or any type A Weyl

group) that the simple reflections are all in the same conjugacy class, and so the

indeterminates ξs are all equal, and we write them all ξ, giving us R = Z[ξ].

The elements of Z(H(A3))
+
min are:

ΓC = T̃C for C = Cid, C1, C13,

ΓC12 = T̃C12 + ξ(T̃121 + T̃232 + 2T̃12321 + T̃21321 + T̃12132) + ξ2T̃121321,

ΓC123 = T̃C123 + ξ(T̃1213 + T̃1321 + T̃1232 + T̃2321 + T̃2132 + 2T̃121321)+

ξ2(T̃12132 + T̃21321 + T̃12321) + ξ3T̃121321.

We may compare these elements with the Jones elements (see section 5), which

we denote bC for the element corresponding to the conjugacy class C:

bCid
= 24ΓCid

+ 12ξΓC1 + 6ξ2ΓC13 + 4ξ2ΓC12 + ξ3ΓC123 ,

bC1 = 2ΓC1 + 2ξΓC12 + 2ξΓC13 + ξ2ΓC123 ,

bC13 = 2ΓC13 + ξΓC123 ,

bC12 = ΓC12 + ξΓC123 ,

bC123 = ΓC123 .

The upper-triangularity of these relationships reflects the fact that apart from

those in C the Jones element corresponding to C contains shortest elements only

of conjugacy classes of length greater than lC .

We can graphically show the construction of ΓC12 in H(A3), starting at the

top with the shortest elements in C12, and s-class element completions denoted

by connecting lines. The practical process is to start with the shortest, and check

that for each s there are lines labled by s connecting the element with the others
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in its s-class element. The shortest term for which there is no connection for some

s is the term we complete.

Note that both ξT̃12321 and ξ2T̃121321 are self-conjugate under T̃2, so form s2-

class elements of Type I, and as before, we omit several horizontal lines which are

inferred by the presence of type bII
ds s-class elements.
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One can see that for any s ∈ S, we may cut up the above graph into disjoint

subgraphs corresponding to the types shown in Figure (3.1.6) as well as the sin-

gleton subgraphs corresponding to type I s-class elements, although in the above

diagram we have suppressed any horizontal lines from the type II graphs for sim-

plicity. This shows that the sum of the terms above is in the centre, and by

checking each step never adds shorter we have (by (3.3.6)) that this sum is the

element ΓC12 ∈ Z(H(A3))
+
min. Alternatively, to see the sum is ΓC12 one could

observe that it specializes to T̃C12 and that there are no shortest elements from

any conjugacy class other than those from T̃C12 . We can then make our conclusion

using the characterization of (3.2.6).

Type A4.

The conjugacy classes in type A4 correspond to the seven partitions of 5 (see

[C1]), giving us representatives s1s2s3s4, s1s2s3, s1s2s4, s1s2, s1s3, s1, and 1. The
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conjugacy classes are:

C1 ={1}

C2 ={s1, s2, s3, s4, s1s2s1, s2s3s2, s3s4s3, s1s2s3s2s1, s2s3s4s3s2, s1s2s3s4s3s2s1},

C3 ={s1s3, s1s4, s2s4, s2s1s3s2, s1s3s4s3, s1s2s1s4, s3s2s4s3, s1s2s1s3s2s1,

s2s1s3s4s3s2, s1s3s2s1s4s3, s2s3s2s4s3s2, s1s2s1s3s4s3s2s1,

s2s1s3s2s1s4s3s2, s1s2s3s2s4s3s2s1, s1s2s1s3s2s1s4s3s2s1}

C4 ={s1s2, s2s1, s2s3, s3s2, s3s4, s4s3, s1s2s1s3, s3s1s2s1, s1s2s3s2, s2s3s2s1,

s2s3s2s4, s2s4s3s2, s2s3s4s3, s3s4s3s2, s1s2s3s4s3s2, s1s2s1s3s4s3,

s1s3s2s1s4s3, s1s2s4s3s2s1, s2s3s4s3s2s1, s1s2s3s2s1s4}

C5 ={s1s2s4, s2s1s4, s1s3s4, s1s4s3, s1s3s2s4s3, s3s2s1s4s3, s2s1s3s2s4,

s2s1s4s3s2, s2s1s3s2s4s3s2, s1s2s3s2s4s3s2, s2s3s2s4s3s2s1, s2s3s2s1s4s3s2,

s2s1s3s2s1s4s3, s1s2s1s3s2s1s4, s1s2s1s4s3s2s1, s1s3s2s1s4s3s2,

s3s2s1s4s3s2s1, s1s2s1s3s2s4s3, s1s2s3s2s1s4s3s2s1, s1s2s1s3s2s4s3s2s1}

C6 ={s1s2s3, s1s3s2, s2s1s3, s3s2s1, s2s3s4, s2s4s3, s3s2s4, s4s3s2, s1s2s1s4s3,

s1s2s1s3s4, s1s2s1s3s2, s1s2s3s2s4, s1s2s3s4s3, s1s2s4s3s2, s1s3s2s1s4,

s1s3s4s3s2, s1s4s3s2s1, s2s1s3s2s1, s2s1s3s4s3, s2s3s2s1s4, s2s3s2s4s3,

s2s4s3s2s1, s3s2s4s3s2, s3s4s3s2s1, s1s2s1s3s4s3s2, s1s2s3s2s1s4s3,

s1s3s2s4s3s2s1, s2s1s3s4s3s2s1, s1s2s1s3s2s1s4s3s2, s2s1s3s2s1s4s3s2s1}

C7 ={s1s2s3s4, s2s1s3s4, s1s3s2s4, s1s2s4s3, s3s2s1s4, s2s1s4s3, s1s4s3s2,

s4s3s2s1, s1s2s1s3s2s4, s1s2s3s2s4s3, s2s3s2s1s4s3, s3s2s1s4s3s2,

s1s2s1s4s3s2, s2s1s3s2s1s4, s2s1s3s2s4s3, s1s3s2s4s3s2, s3s2s4s3s2s1,

s2s1s4s3s2s1, s1s2s3s2s1s4s3s2, s2s3s2s1s4s3s2s1, s1s3s2s1s4s3s2s1,

s1s2s1s3s2s1s4s3, s1s2s1s3s2s4s3s2, s2s1s3s2s4s3s2s1}

As with types A2 and A3, we will write ξ = ξs for all s ∈ S.

The first three conjugacy classes (in the above order) have the property that

there are no same-length conjugations by simple reflections, which means that

their corresponding class element in the Iwahori-Hecke algebra will simply be the
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conjugacy class sum. The other class elements are all very large (as one would

expect), so we will not diagramatically display them (although practically that is

how they were calculated). However below we show the construction of the con-

jugacy class C3, which is quite beautiful. Note that the method used to calculate

the conjugacy class is the same as the method used to calculate the class element,

but with ξ = 0.

Will write Γi for the class element corresponding to Ci, and T̃i for T̃si (writing

1 for the identity instead of T̃1). The class elements of H(A4) are then:

Γi =T̃Ci for i = 1, 2, 3,

Γ4 =T̃C4 + ξ(T̃121 + T̃232 + T̃343 + T̃12132 + T̃21321 + 2T̃12321 + 2T̃23432 + T̃23243+

T̃32432 + T̃1213432 + T̃2134321 + 3T̃1234321 + T̃1232143 + T̃1324321 + T̃121321432+

T̃213214321) + ξ2(T̃121321 + T̃232432 + T̃12134321 + T̃12324321 + T̃1213214321),

Γ5 =T̃C5 + ξ(T̃1214 + T̃1343 + T̃132143 + T̃213432 + T̃13214321 + 2T̃12134321+

2T̃21321432 + T̃23214321 + T̃12132432 + T̃12321432 + T̃21324321 + T̃12324321+

T̃12132143 + 2T̃1213214321) + ξ2(T̃213214321 + T̃121321432 + T̃123214321+

T̃121324321) + ξ3T̃1213214321,

Γ6 =T̃C6 + ξ(T̃1213 + T̃1232 + T̃1321 + T̃2132 + T̃2321 + T̃2324 + T̃2343 + T̃2432+

T̃3243 + T̃3432 + 2T̃121321 + T̃121324 + 2T̃121343 + T̃121432 + 2T̃123214+

T̃123243 + 2T̃123432 + 2T̃124321 + T̃132143 + T̃132432 + 2T̃134321 + T̃213214+

T̃213243 + T̃213432 + T̃214321 + T̃232143 + 2T̃232432 + 2T̃234321 + T̃321432+

T̃324321 + T̃12132143 + 2T̃12134321 + T̃12132432 + T̃12321432 + 2T̃12324321+

T̃13214321 + T̃21321432 + T̃21324321 + T̃23214321 + 2T̃1213214321) + ξ2(T̃12132+

T̃12321 + T̃21321 + T̃23243 + T̃23432 + T̃32432 + T̃1213214 + T̃1213243+

2T̃1213432 + T̃1214321 + 2T̃1232143 + T̃1232432 + 3T̃1234321 + T̃1321432+

2T̃1324321 + T̃2132143 + T̃2132432 + 2T̃2134321 + T̃2321432 + T̃2324321 + T̃3214321+

3T̃121321432 + 2T̃121324321 + 2T̃123214321 + 3T̃213214321)+

ξ3(T̃121321 + T̃232432 + T̃12132143 + T̃12132432 + 2T̃12134321 + T̃12321432+
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2T̃12324321 + T̃13214321 + T̃21321432 + T̃21324321 + T̃23214321 + 4T̃1213214321)+

ξ4(T̃121321432 + T̃121324321 + T̃123214321 + T̃213214321) + ξ5T̃1213214321.

Γ7 = T̃C7 + ξ(T̃12134 + T̃12143 + T̃12324 + T̃12343 + T̃12432 + T̃13214 + T̃13243+

T̃13432 + T̃14321 + T̃21324 + T̃21343 + T̃21432 + T̃23214 + T̃24321 + T̃32143+

T̃34321 + 2T̃1213214 + 2T̃1213243 + T̃1213432 + 2T̃1214321 + T̃1232143+

2T̃1232432 + 2T̃1321432 + T̃1324321 + 2T̃3214321 + 2T̃121321432 + 3T̃121324321+

3T̃123214321 + 2T̃213214321) + ξ2(T̃121324 + T̃121343 + T̃121432 + T̃123214+

T̃123243 + T̃123432 + T̃124321 + T̃132143 + T̃132432 + T̃134321 + T̃213214 + T̃213243+

T̃213432 + T̃214321 + T̃232143 + T̃234321 + T̃321432 + T̃324321 + 3T̃12132143+

3T̃12132432 + 2T̃12134321 + 3T̃12321432 + 2T̃12324321 + 3T̃13214321 + 3T̃21321432+

3T̃21324321 + 3T̃23214321 + 5T̃1213214321) + ξ3(T̃1213214 + T̃1213243 + T̃1213432+

T̃1214321 + T̃1232143 + T̃1232432 + T̃1234321 + T̃1321432 + T̃1324321 + T̃2132143+

T̃2132432 + T̃2134321 + T̃2321432 + T̃2324321 + T̃3214321 + 4T̃121321432+

4T̃121324321 + 4T̃123214321 + 4T̃213214321) + ξ4(T̃12132143 + T̃12132432+

T̃12134321 + T̃12321432 + T̃12324321 + T̃13214321 + T̃21321432 + T̃21324321+

T̃23214321 + 5T̃1213214321) + ξ5(T̃121321432 + T̃121324321 + T̃123214321+

T̃213214321) + ξ6T̃1213214321.
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Again, in the following diagram we will simplify notation by writing i for si.
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The conjugacy class C3 in type A4

5.5 Type B3

Let W be the Weyl group of type B3, generated by t, s1, s2, and with relations

t2 = s2
i = 1, (ts1)

4 = (s1s2)
3 = (ts2)

2 = 1. The conjugacy classes of W are

C1 = {1},

C2 = {s2t, s1s2ts1, s1s2s1ts1s2, ts1s2ts1t, ts1s2s1ts1s2t, s1ts1s2ts1ts1}

C3 = {t, s1ts1, s2s1ts1s2}, C4 = {s1, s2, s1s2s1, ts1t, ts1s2s1t, s1ts1s2s1ts1},

C5 = {ts1ts1, s2ts1ts1s2, s1s2ts1ts1s2s1}, C6 = {ts1ts1s2s1ts1s2},

C7 = {s1s2, s2s1, ts2s1t, ts1s2t, s1s2s1ts1t, ts1ts1s2s1, ts2s1ts2s1, s1s2ts1s2t},

C8 = {s1t, ts1, ts1s2s1, s1s2s1t, s1ts1s2, s2s1ts1},

C9 = {s1s2t, s2s1t, ts1s2, ts2s1, s2s1ts2s1, s1s2ts1s2, ts1ts2s1ts1, s1ts1s2ts1t},

C10 = {s2s1ts1t, s1s2ts1t, ts1ts1s2, ts1ts2s1, s1s2s1ts2ts1, s2ts1ts1s2s1}.

Again we abbreviate T̃si to T̃i, and write T̃C for the conjugacy class sum. The
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minimal basis for Z(H(B3)) over Z[ξ] is the set {Γ1, . . . ,Γ10}, where the Γi are:

Γi = T̃Ci for i = 1, . . . , 6,

Γ7 = T̃C7+ξs(T̃121+T̃t121t+T̃1t21t12+T̃t21t121+2T̃1t121t1)+ξt(T̃t1t121t+T̃t1t21t1)+

ξ2
s T̃1t121t12 + ξsξt(T̃t1t21t12 + T̃t1t121t1),

Γ8 = T̃C8 + ξs(T̃121 + 2T̃21t12 + T̃121t1 + T̃1t121 + T̃t121t1t + T̃t1t121t) + ξt(T̃t1t +

T̃t121t + T̃1t121t1) + ξ2
s (T̃121t12 + T̃t1t21t12 + T̃t1t121t1),

Γ9 = T̃C9 +ξs(T̃21t1+ T̃121t + T̃12t1+ T̃t121+ T̃1t12+2T̃121t12+ T̃t1t21t +2T̃t1t21t12+

2T̃t1t121t1)+ξt(T̃t12t + T̃t21t)+ξsξt(T̃t121t +2T̃1t121t1 + T̃t121t12 + T̃21t121t)+

ξ2
s (T̃121t1 + T̃1t121 + T̃21t12 + T̃t121t1t + T̃t1t121t) + ξ3

s (T̃121t12 + T̃t1t21t12 +

T̃t1t121t1) + ξ2
sξtT̃1t21t121 + ξsξ

2
t (T̃t1t21t12 + T̃t1t121t1),

Γ10 = T̃C10+ξs(T̃121t1t+T̃t121t1+T̃t21t12+T̃1t121t+T̃t1t121+2T̃1t21t121)+ξt(T̃t1t21t+

T̃t1t121t1 + T̃t1t21t12) + ξsξt(T̃t1t21t1 + T̃t1t121t) + ξ2
s (T̃1t21t12 + T̃1t121t1 +

T̃t121t12) + ξ2
sξt(T̃t1t121t1 + T̃t1t21t12) + ξ3

s T̃1t21t121.
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We show below the construction of Γ7 in type B3, where we abbreviate T̃si

simply to i.
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Chapter 6

The Brauer homomorphism

6.1 Further properties of the class elements

For our results on the Brauer homomorphism, we need to derive some more

results about the class elements and the minimal basis. In particular, as a con-

sequence of the algorithm, one has additional information about the terms rwT̃w

which appear in the class element ΓC .

(6.1.1) Lemma. Let d be distinguished in 〈s〉d〈s〉, for s ∈ S, such that ds 6= sd,

and let si ∈ S. Then

si ≤ d =⇒ si ≤ sds,

si ≤ ds =⇒ si ≤ sd and si ≤ sds.

where the inequality is the Bruhat order.

Proof. We may assume si is not equal to s, as otherwise the lemma follows trivially.

Since sd 6= ds, we have l(sds) = l(d) + 2, so the first implication follows. On the

other hand, if si ≤ sd, then si must be less than d in the Bruhat order, and so

less than sd and sds, since l(sd) = l(d) + 1. �

The contrapositive of the above is actually very useful, so we state it seperately.

(6.1.2) Lemma. Let d be distinguished in 〈s〉d〈s〉, for s ∈ S, such that ds 6= sd,

and let si ∈ S. Then

si 6≤ sds =⇒ si 6≤ d, ds, or sd,

si 6≤ sd =⇒ si 6≤ ds or d.

If a term rT̃w appears with r 6= 0 in a class element ΓC , it is probably clear

what is meant when we say “T̃w arises from T̃Cmin” in the context of additions via

the algorithm A. We want to define this more explicitly.

(6.1.3) Definition. Let w ∈ W , and u ∈ Cmin. Then T̃w is said to arise from

T̃u if there exists a sequence w0, w1, . . . , wm of elements of W with u = w0 and
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w = wm, and a sequence of simple reflections s0, . . . , sm−1 from S such that for

each i and di distinguished in 〈si〉di〈si〉, we have l(sidisi) = l(di) + 2 and either:

(1) wi = di and wi+1 = sidisi, or

(2) wi = disi and wi+1 = sidi or sidisi, or

(3) wi = sidi and wi+1 = disi or sidisi.

(6.1.4) Lemma. Suppose T̃w arises from T̃u with u ∈ Cmin, and let w0, . . . , wm be

the sequence linking them, with s0, . . . , sm−1 the corresponding sequence of simple

reflections. Then sj ≤ wi+1 for all 0 ≤ j < i ≤ m − 1.

Proof. By induction on either m or i, and using (6.1.1). �

Again, we will need a contrapositive:

(6.1.5) Corollary. Define u, w, and the sequences of wi and si as in (6.1.4).

Let sl ∈ S, with sl 6= si for any 0 ≤ i ≤ m − 1. Then sl 6≤ w implies sl 6≤ u.

(6.1.6) Proposition. Let C be a conjugacy class in W , ΓC be the corresponding

class element, and s ∈ S. Then s ≤ w for all w ∈ Cmin implies s ≤ w for

all rT̃w ≤ ΓC . Similarly, s 6≤ w for some rT̃w ≤ ΓC implies s 6≤ u for some

T̃u ≤ T̃Cmin .

Proof. It is clear from the definition that T̃w appears in ΓC with non-zero coeffi-

cient if and only if it arises from T̃u for some u ∈ Cmin. The key observation here

is that in the sequence of wi described above, if a simple reflection s is less than

wi then it is also less than wi+1, by lemma (6.1.1). And so, if s ≤ u ∈ Cmin, then

s is less than every term which arises from T̃u. On the other hand, if s is not less

than a term rT̃w in ΓC , then there must be a term in T̃Cmin from which it arose,

which also does not contain s. �

6.2. The Jones Brauer homomorphism.

In his thesis [J1], Lenny Jones defined a Brauer type homomorphism from the

centre of the Iwahori-Hecke algebra of type An−1 into the centre of a certain

parabolic subalgebra. This Brauer homomorphism has already found applications

in the Green correspondence for H-modules in [D], and has been extended to a
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Braur homomorphism for q-Schur algebras in [DD]. In this chapter, we will describe

the image of the minimal basis under the Brauer homomorphism, and the kernel

of the homomorphism in terms of the minimal basis.

We begin with the definition as given in [J1].

Let H be the Iwahori-Hecke algebra of type An−1, and let λ be a partition of

n. Then we write Hλ for the subalgebra of H corresponding to the subalgebra

Wλ of W = W (An). We will be dealing with a few special examples, so we define

the following abbreviations. Let γ = (l, n − l) ` n, and write Wl = W(l,1n−l) and

Hl = H(l,1n−l). For clarity, we will continue to write W(1l,n−l) and H(1l,n−l) in

full.

The Brauer homomorphism is a composition of two maps. Firstly, we may

decompose the centralizer of the subalgebra as follows:

ZH(Hγ) = Z(Hγ) ⊕
⊕

x6∈Wγ

(

ZHlT̃xHl
(Hγ)

)

Since the centre is a subalgebra of the centralizer ZH(Hγ), we may project Z(H)

onto Z(Hγ). Let us call this projection ρ.

The Brauer homomorphism σ is defined to be the composition of ρ with the

canonical homomorphism θ : Z(Hγ) → Z(Hγ)/[NWl,1(Hγ) ∩ Z(Hγ)], giving us a

homomorphism:

σ : Z(H) −→ Z(Hγ)/[NWl,1(Hγ) ∩ Z(Hγ)].

6.3. The image of the minimal basis

Earlier in this thesis we have discussed centralizers of parabolic subalgebras

of the Iwahori-Hecke algebra. But the Brauer homomorphism maps not to a

centralizer but the centre of a parabolic subalgebra. In this case, all the results of

chapter three relating to the algorithm and the minimal basis are correct - a fact

easily seen as follows.

(6.3.1) Lemma. Let C be a conjugacy class of Wγ where γ = (l, n − l). Then

C = C1C2 where C1 is a conjugacy class in Wl and C2 is a conjugacy class in

W(1l,n−l). Similarly, if ΓC is a class element in Hγ , then ΓC = ΓC1ΓC2 .
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Proof. This follows by noting that Wl and W(1l,n−l) commute, so conjugation in

Wγ is actually two separate commuting conjugations, of the two separate compo-

nents of any element of Wγ . The ξ-analogue follows also. �

There are some useful characteristics of the minimal basis which help us describe

its image under σ. One of these in particular is that expressed in lemma (6.1.6),

that if a generator (sl for example) does not appear in a term in a class element,

then the term has arisen via additions in the algorithm from a minimal element

also without the generator sl. This gives us:

(6.3.2) Lemma. The image of ΓC under the projection ρ is a sum of class ele-

ments of Hγ , each with coefficient one.

Proof. The image ρ(ΓC) must be an element of Z(Hγ), and so a linear combination

of class elements of Hγ . Now suppose one of these class elements of Hγ has

coefficient not equal to one, and let Cγ be the corresponding conjugacy class in

Wγ . It suffices to show that Cγ,min ⊆ Cmin.

Let u ∈ Cγ,min, not in Cmin. Then u has arisen in ΓC from a shortest element

of C via a sequence of reflections s0, . . . , sm, which must include sl - otherwise,

the element of Cmin giving rise to u would also have to be in Wγ by (6.1.5), and

u could not be minimal in Cγ . But then, we must have sl ≤ u by (6.1.4), a

contradiction. �

If λ = (λ1, λ2, . . . ) ` n, then we call the elements λi the components of λ. An

(l, n − l)-bipartition is a pair of partitions (µ, ν), with µ ` l and ν ` n − l. An

(l, n− l)-bipartition of λ is an (l, n− l)-bipartition whose components are those of

λ. Let Bip(λ) = {(µi, νi)} be the set of (l, n − l)-bipartitions of λ ` n.

An element w ∈ Cλ is said to be of shape λ = (λ1, . . . , λr) if it is in Cλ,min and

also in W(λ1,1n−λ1 ) × W(1λ
1 ,λ2,1n−λ1−λ2 ) × · · · × W1n−λr ,λr).

(6.3.3) Proposition. The number of conjugacy classes of Wγ contained in Cλ ∈

ccl(W ) (for λ ` n) is the number of (l, n − l)-bipartitions of λ. This is also thus

the number of class elements of Hγ contained in the class element ΓCλ
of H.

Proof. We show there is a one-to-one correspondence between (l, n−l)-bipartitions
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of λ, and conjugacy classes of Wγ contained in Cλ.

Let (µ, ν) be an (l, n− l)-bipartition of λ. Then there is a composition µν of n

with the components of µ followed by those of ν which is conjugate to the partition

λ. Thus the element of shape µν is conjugate to the element of shape λ, and is an

element of Cλ,min. It also corresponds uniquely to a conjugacy class of Wγ which

is contained in Cλ.

Any conjugacy class of Wγ contained in Cλ can be written as a product of a

conjugacy class of Wl and one of W(1l,n−l). These in turn correspond uniquely

to partitions µ and ν of l and n − l respectively, and there are shortest elements

from each of these conjugacy classes of shape µ and ν, whose product is a shortest

element of Cλ of shape µν. Then (µ, ν) must be an (l, n− l)-bipartition of λ, since

each shortest element of the conjugacy class Cλ corresponds to a composition of

λ - meaning the components of (µ, ν) are a composition of λ. �

(6.3.4) Corollary. Let λ ` n. Then

ρ(Γλ) =
∑

(µi,νi)∈Bip(λ)

ΓCµi
ΓCνi

where Cµi and Cνi are conjugacy classes in Wl and W(1l,n−l) respectively.

Proof. This follows from (6.3.2) and (6.3.3). �

(6.3.5) Lemma. Let w ∈ Cmin for some conjugacy class C of Wl. Then ΓC <

NWl,1(T̃w).

Proof. Firstly, we know ΓC ≤ NWl,1(T̃w), since NWl,1(T̃w) is both central in Hl

and contains shortest elements of C, so satisfies the requirements of (3.4.1). So it

suffices to show that either the shortest elements of other conjugacy classes also

occur in NWl,1(T̃w), or the coefficient of T̃C in NWl,1(T̃w) is more than one.

Suppose that w is a Coxeter element of Wl, and C is the Coxeter class. Then

the element NWl−1,1(T̃w) satisfies (3.2.1.1) and (3.2.1.2), by [J2], so is in fact ΓC

by (3.2.6). Then

NWl,1(T̃w) = NWl,Wl−1
(NWl−1,1(T̃w))

= NWl,Wl−1
(ΓC)

> ΓC ,
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where the first equality is by [J2;2.12].

If w is not a Coxeter element of Wl and C is not the Coxeter class, then w is

a Coxeter element of some parabolic subgroup Wα of Wl (where α is a partition

of l). We write α = (α1, . . . , αt). The Jones basis element of the centre of Hl

corresponding to this conjugacy class of Wl is

bα = NWl,Wα(ηα)

where

ηα =

t∏

i=1

NW(1,...,1,αi−1,1,...,1),1(T̃wi),

and where wi is the Coxeter element of the component Wαi of the parabolic

subgroup Wα = Wα1 × · · · × Wαt .

But then ηα ≤ NWα,1(T̃w), so

NWl,1(T̃w) = NWl,Wα(NWα,1(T̃w))

≥ NWl,Wα(ηα)

= bα.

By [J2;3.29], bα|ξ=0 = [NWl
(Wα) : Wα]T̃C - that is, the integer part of the coef-

ficient of T̃C in bα is [NWl
(Wα) : Wα] (Jones further shows that this is the only

coefficient of T̃C in bα in (3.28) and (3.30), but we do not need this). Since we

have assumed C = Cα is not the Coxeter class, we have that [NWl
(Wα) : Wα] > 1,

and so the coefficient of T̃C in NWl,1(T̃w) is more than one, and so we must have

NWl,1(T̃w) > ΓC . �

Now, we only need to conclude that nothing is lost from any one ΓC under θ.

(6.3.6) Corollary. There are no elements of NWl,1(Hγ) less than any class ele-

ment ΓC .

Therefore,

σ(ΓC) = ρ(ΓC) mod NWl,1(Hγ) ∩ Z(Hγ).

(6.3.7) Example. Let n = 4, and l = 2. Then we are dealing with the Weyl

group of type A3, and the subgroup W(2,2) = W (A1) × W (A1) = 〈s1, s3〉. The
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class elements are described in section 5.2, and using the notation from there, we

have

Z(H)
ρ

−→Z(H〈s1,s3〉)

ΓCid
−→T̃id

ΓC1 −→T̃s1 + T̃s3

ΓC13 −→T̃s1s3

ΓC12 −→0

ΓC123 −→0.

Now NW2,1(Hγ) is spanned by NW2,1(T̃w) for w ∈ W(2,2) = 〈s1, s3〉, and these

elements can be simply calculated (in such a small case):

NW2,1(T̃id) = T̃idT̃idT̃id + T̃s1 T̃idT̃s1

= T̃id + T̃s1 T̃s1

= 2T̃id + ξT̃s1

NW2,1(T̃s1) = T̃idT̃s1 T̃id + T̃s1 T̃s1 T̃s1

= T̃s1 + T̃s1(T̃id + ξT̃s1)

= ξT̃id + (2 + ξ2)T̃s1

NW2,1(T̃s3) = NW2,1(T̃id)T̃s3

= 2T̃s3 + ξT̃s1s3

NW2,1(T̃s1s3) = NW2,1(T̃s1)T̃s3

= ξT̃s3 + (2 + ξ2)T̃s1s3 .

Note that none if these is less than ρ(ΓC) for any C, as in (6.3.6).

We can check that σ is a homomorphism in a few interesting cases now. For

instance,

ρ(ΓC1ΓC13) = T̃1 + T̃3 + 2ξT̃s1s3

= (T̃s1 + T̃s3)T̃s1s3

= ρ(ΓC1)ρ(ΓC13).
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A more challenging example is with ΓC1 and ΓC12 :

σ(ΓC1ΓC12) = θ
(
4ξT̃id + (4 + 3ξ2)T̃s1 + (4 + 3ξ2)T̃s3 + (4ξ + 2ξ3)T̃s1s3

)

= θ
(
ξ[2T̃id + ξT̃s1 ] + 2[ξT̃id + (2 + ξ2)T̃s1 ]

+ (2 + ξ2)[2T̃s3 + ξT̃s1s3 ] + ξ[ξT̃s3 + (2 + ξ2)T̃s1s3 ]
)

= 0,

which is as it should be, since σ(ΓC1)σ(ΓC12) = (T̃s1 + T̃s3)0 = 0.

6.4. The kernel of the Brauer homomorphism

(6.4.1) Lemma. NWl,1(hΓC) = NWl,1(h)ΓC ∈ Z(Hγ) for C a conjugacy class

in W(1l,n−l), and h ∈ Hl. Thus NWl,1(h)ΓC ∈ kerθ for all h ∈ Hl and C ∈

ccl(W(1l,n−l)).

Proof. This follows since the conjugations by elements of Hl in the definition

of NWl,1 all commute with ΓC ∈ H(1l,n−l). Then since NWl,1(h) ∈ Z(Hl), we

have NWl,1(hΓC) = NWl,1(h)ΓC ∈ Z(Hγ), and so is in the kernel of θ for any

h ∈ Hl. �

We may write NWl,1(T̃w) for w ∈ Wl as a linear combination of the class

elements in Hl, with coefficients in R+ (since the class elements are minimal), as

follows:

(?) NWl,1(T̃w) =
∑

µi`l

aw,iΓCµi

with aw,i ∈ R, Cµi conjugacy classes in Wl, and ΓCµi
the corresponding class

elements in Hl.

Let Cν be a conjugacy class in W(1l,n−l), with ν ` n − l. Then for each µi ` l

there exists a unique partition λi of n with components from µi and ν. Corre-

spondingly, there is a unique conjugacy class in W for each pair µi and ν. This

class we denote Cµi,ν or Cλi .
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Then for a fixed ν ` n − l and with the aw,i as in ?,

σ
( ∑

µi`l

aw,iΓCλi

)
= θ

( ∑

µi`l

aw,iΓCµi
ΓCν

)

= θ
(( ∑

µi`l

aw,iΓCµi

)
ΓCν

)

= θ(NWl,1(T̃w)ΓCν )

= θ(NWl,1(T̃wΓCν ))

∈ θ
(
NWl,1(Hγ) ∩ Z(Hγ)

)

= 0.

The kernel of the map σ is the set of those central elements which either project

to zero under the map ρ, or whose projection under ρ is in NWl,1(Hγ) (the projec-

tion of a central element will automatically also be in Z(Hγ)). Those that project

under ρ to zero are relatively easy to describe with reference to the class elements

in Z(H), as follows. Let ΓCλ
be a class element, with Cλ a conjugacy class of W .

Then ρ(ΓCλ
) = 0 if and only if C ∩Wl ×W(1l,n−l) = ∅, which happens if and only

if there are no γ-bipartitions of λ.

If ρ(h) 6= 0 for h ∈ Z(H), then σ(h) = 0 if and only if ρ(h) ∈ NWl,1(Hγ) =

NWl,1(Hl) × Z(H(1l,n−l)). This means that ρ(h) must be in the span of terms of

form
∑

µi`l aw,iΓµiΓν , where ν ` n − l, and Cν is a conjugacy class in W(1l,n−l),

since h is in the R-span of the set of class elements. This can only happen if h is a

linear combination of terms of form
∑

µi`l aw,iΓCλi
where the λi are the partitions

of n corresponding to the compositions (µi, ν) of n.

Thus we have shown the following.

(6.4.2) Theorem. Let the set {µi | 1 ≤ i ≤ r} be the complete set of partitions

of l, and for each ν ` n− l let Cµi,ν be the conjugacy class in W corresponding to

the composition of n with components from µi and ν.

Then the kernel of the Brauer homomorphism σ is the set of elements spanned

by those of form
r∑

i=1

aw,iΓCµi,ν

for all w ∈ Wl, and for all ν ` n − l, together with all those ΓCλ
where λ has no

(l, n − l)-bipartitions.
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6.5. A Conjecture on the minimal basis

We have now given a generalization of (2.2.1) in the following cases:

(1) W is of type H3 or is dihedral, and J = S;

(2) W is any Coxeter group and |J | = 1;

(3) W is a Weyl group and |J | = 2;

(4) W is of type A or B and J is principal.

This is sufficient motivation to make the following general conjecture:

(6.5.1) Conjecture. Let W be any Coxeter group generated by the set S of simple

reflections, and let J ⊆ S. Suppose conjecture (2.2.1) holds. Then

(i) ZH(HJ)+min is an R-basis for ZH(HJ),

(ii) h ∈ ZH(HJ)+min if and only if

a) h|ξs=0 = T̃C for some C ∈ cclJ(W ), and

b) h − T̃C contains no shortest elements of any J-conjugacy class.

Further, by the remarks in 3.5 and the results in chapter 3, the proof of this

conjecture is reduced to proving the following conjecture, an analogy of (1.1.2):

(6.5.2) Conjecture.

(i) If J ⊆ S, then every WJ -WJ double coset is reducible.

(ii) If C is a J-conjugacy class, and w,w′ ∈ Cmin, then there exists a sequence

of xi ∈ WJ and wi ∈ Cmin such that w = w0 and wn = w′, with xiwix
−1
i = wi+1

and l(xiwi) = l(xi) + l(wi) or l(wix
−1
i ) = l(wi) + l(x−1

i ) for all 0 ≤ i ≤ n − 1.
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Chapter 7

Counting J-conjugacy classes in type An

Some work has already been done on counting the number of WJ -WK double

cosets in a Weyl group W of type A, for J and K subsets of S. For instance,

James and Kerber in [JK] show they correspond to certain n × n matrices, and

Andrew Jones in [Jo] developes a method for counting these. However it seems

nothing has been done on counting actual J-conjugacy classes.

There are two obvious approaches. One is to take each WJ -WJ double coset and

count the J-conjugacy classes contained in it. The other is to take a conjugacy

class, and count the J-conjugacy classes in it. Since we can count either the

number of double cosets, or the number of conjugacy classes, both these would

yield a solution. In the following, we take the latter approach, to develop an easy

correspondence between J-conjugacy classes, and certain placings of numbers in a

cycle type. In the second section, we make an attempt to find a formula for this

number.

7.1. A correspondence

We now turn our attention to J-conjugacy classes of W (An). We will start with

J = {s1, . . . , sj}, although this should be easily generalised to arbitrary J ⊆ S.

(7.1.1) Lemma. The {s1, . . . , sj}-conjugacy classes contained in a conjugacy

class C of W (An) correspond to distinct placings of {j + 2, . . . , n + 1}in the cycle

structure of C, up to permutation of cycles, and cyclic permutation within cycles.

Proof. The elements of the conjugacy class C correspond to distinct placings of

{1, . . . , n + 1} in the cycle structure corresponding to C. When we refer to dis-

tinct placings in a cycle structure we naturally refer to cyclically distinct placings.

That is, placement up to cyclical permutation of entries within a cycle, and up to

permutation of cycles of same length. So for example, (1 2 3) ≡ (2 3 1) 6≡ (2 1 3),

and (1 2)(3 4) ≡ (3 4)(1 2).

Those elements of C conjugate under a generator si are those whose placings of

{1, 2, . . . , i−1, i+2, . . . , n+1} are the same. This is since the effect of conjugating
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by si is to exchange the letters i and i + 1 in the cycle structure, fixing all else.

Conjugating an element by words in 〈s1, . . . , sj〉 has the effect of permuting the

letters {1, . . . , j +1} in the cycle structure, and each permutation of {1, . . . , j +1}

in the cycle structure of an element corresponds to conjugation by an element of

〈s1, . . . , sj〉.

Thus all elements of C with the same placement of {j + 2, . . . , n + 1} are con-

jugate under 〈s1, . . . , sj〉. That is, all distinct placements of {1, . . . , n + 1} which

have the letters {j + 2, . . . , n + 1} in the same positions (cyclically the same), are

in the same {s1, . . . , sj}-conjugacy class. �

This generalizes easily to any J-conjugacy class, not just for J principal as

above.

(7.1.2) Example. Enumerating the {s1, s2}-conjugacy classes in type W (A4).

Here j = 2, n = 4. We need to count the number of distinct ways of placing

{j + 2, . . . , n + 1} = {4, 5} in the cycles corresponding to partitions of n + 1 = 5.

There are seven partitions of 5: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and

(1, 1, 1, 1, 1). The following are all the cyclically distinct ways of placing 4 and 5

in the cycle structures corresponding to these seven partitions of 5 (the fullstops

correspond to the unfilled places):

(5) → (4 5 . . .) (3, 2) → (4 5 .)(. .)
(4 . 5 . .) (4 . 5)(. .)
(4 . . 5 .) (4 . .)(5 .)
(4 . . . 5) (5 . .)(4 .)

(4, 1) → (4 5 . .)(.) (. . .)(4 5)
(4 . 5 .)(.) (2, 13) → (4 5)(.)(.)(.)
(4 . . 5)(.) (4 .)(5)(.)(.)
(4 . . .)(5) (5 .)(4)(.)(.)
(5 . . .)(4) (. .)(4)(5)(.)

(3, 12) → (4 5 .)(.)(.) (22, 1) → (4 5)(. .)(.)
(4 . 5)(.)(.) (4 .)(5 .)(.)
(4 . .)(5)(.) (4 .)(. .)(5)
(5 . .)(4)(.) (5 .)(. .)(4)
(. . .)(4)(5) (15) → (4)(5)(.)(.)(.)

Thus there are 28 {s1, s2}-conjugacy classes in the Weyl group of type A4. One

can find a representative of a given {s1, s2}-conjugacy class by placing 1, 2, and 3
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in the vacant places of the relevant cycle type. Similarly one can list all elements

of the {s1, s2}-conjugacy class by listing all distinct placings of 1, 2, and 3 in the

relevant cycle type.

7.2. Some counting

We now turn to the question of counting the number of J-conjugacy classes in

a given Weyl group of type An, where J = {s1, . . . , sj}.

We start by restricting our attention to an arbitrary conjugacy class Cα of

W (An). As shown in (7.1.1), the number of J-conjugacy classes in Cα, is the

same as the number of distinct placings of n − j letters in the cycle structure

corresponding to the partition α. For convenience and by abuse of notation, we

will refer to the cycle structure corresponding to α simply as the cycle structure

α.

Write α = (α1, . . . , αm). Firstly we consider how to distribute the n−j letters in

α. Any such distribution is in one-to-one correspondence with an m-composition

of n− k λ |=m n− k such that λ ≤ α. By m-composition, we mean a composition

with m parts, some of which may be zero. A composition λ is ≤ α if and only if

λi ≤ αi, for all i.

Given λ = (λ1, . . . , λm) |=m n − k, we need to choose exactly which λ1 of the

n−k letters goes into the α1-cycle, and which λ2 of the n−k−λ1 remaining letters

goes into the α2-cycle. If we choose in this way, for each λi there are
(
λi+···+λm

λi

)

ways to pick the λi letters for the αi-cycle.

Having chosen the λi letters, we now have to distribute them in the αi-cycle.

This is the same as the problem of distributing λi letters around a circle of αi

places - the answer to which is
(
αi−1
λi−1

)
.

So for each αi and λi, we have
(
λi+···+λm

λi

)(
αi−1
λi−1

)
ways of choosing the λi letters

and placing them in the αi-cycle.

This gives, for each λ |=m n − k, λ ≤ α, we have at most

m∏

i=1

(
λi + · · · + λm

λi

)(
αi − 1

λi − 1

)

=
(n − k)!

λ1! . . . λm!

m∏

i=1

(
αi − 1

λi − 1

)

ways to place the n − k letters in the cycle structure α. However, there is some
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repetition of counting here, which we will address soon, but first let us sum over

the different m-compositions λ to give

∑

λ|=mn−k

λ=(λ1,...,λm)≤α

[
m∏

i=1

(
λi + · · · + λm

λi

)(
αi − 1

λi − 1

)]

=
∑

λ|=mn−k

λ=(λ1,...,λm)≤α

(n − k)!

λ1! . . . λm!

[
m∏

i=1

(
αi − 1

λi − 1

)]

.

Now to see where we have duplicated our counting. Consider the case where

αi = αi+1. Then swapping the entries from λ (λi and λi+1) will give the same

cycle, although it will be counted differently in the above sum. Except, that is,

when both λiand λi+1 are zero - in this case swapping the two is counted as the

same in the above product and there is no problem.

In more generality, if the multiplicity of αi in α is νi, we will need to divide

the above product by νi! for each different multiplicity, and then multiply by the

factorial of the number of zeros in the set {λi, . . . , λi+νi−1}. Let z(αi, λ) be the

number of zeros in {λi, . . . , λi+νi−1}, and write α = (α
νj

j )m′

j=1, meaning that there

are m′ distinct entries in α, and the multiplicity of each is νj . Then we have the

final result that the number of J-conjugacy classes in the conjugacy class Cα is

given by

∑

λ|=mn−k

λ=(λ1,...,λm)≤α

(n − k)!

λ1! . . . λm!

[
m′
∏

j=1

z(αj , λ)!

νj !

][
m∏

i=1

(
αi − 1

λi − 1

)]

.

We have thus shown that

(7.2.1) Theorem. Let J = {s1, . . . , sk}. The number of J-conjugacy classes in

W (An) is

∑

α`n+1

∑

λ|=mn−k

λ=(λ1,...,λm)≤α

(n − k)!

λ1! . . . λm!

[
m′
∏

j=1

z(αj , λ)!

νj !

][
m∏

i=1

(
αi − 1

λi − 1

)]

.

Clearly, if this formula ever is to have a use, it will not be for hand-computation.

In small cases, it is easier to make a list using Lemma (7.1.1). It does never-

theless, provide a way to count J-conjugacy classes if you can find out all the

m-compositions λ ≤ α for each partition α.

We can verify the theorem for a case from example (7.1.2):
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(7.2.2) Example. Let n = 4, and k = 2, as in (7.1.2). Let us consider the case

α = (3, 1, 1). We need to list all the 3-compositions of n−k = 2 less than α. They

are λa = (2, 0, 0), λb = (1, 1, 0), λc = (1, 0, 1), and λd = (0, 1, 1).

For λa, λa1!λa2!λa3! = 2!0!0! = 2. So the first term of the product for λa is

2!/2 = 1. We may write α = (31, 12), and λa = (21, 02). So z(α1, λa) = 0, and

z(α2, λa) = 2, and ν1 = 1, ν2 = 2. So the second term of the product for λa is

(0!2!)/(1!2!) = 1. The third term is
(
2
1

)(
0
−1

)(
0
−1

)
= 2. This gives for λa a total of

1.1.2 = 2.

For λb = (1, 1, 0) we have a first term of 2!/1!0!1! = 2. Again z(α1, λb) = 0

but z(α2, λb) = 1, so the second term is 0!1!/1!2! = 1/2. The third term is
(
2
0

)(
0
0

)(
0
−1

)
= 1, giving a product for λb of 1. The product for λc is the same

essentially, as we have the same z(αj , λ), and the same first and third products.

Finally λd gives us a first term of 2!/0!1!1! = 2. Here z(α1, λ) = 1 and z(α2, λ) =

0, so the second term is 1!0!/1!2! = 1/2. Lastly the third term is
(

2
−1

)(
0
0

)(
0
0

)
= 1,

so our product for λd is 1.

This gives us the sum for α = (3, 1, 1) of 2 + 1 + 1 + 1 = 5, which is confirmed

by our result in (7.1.2).
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Appendix A

Alternative proofs of the existence of the minimal

basis

In this appendix we present proof of the existence of the minimal basis using the

results of Jones [J2] and Geck and Rouquier [GR]. That is, the following methods

are an alternative to those in section 3.2, although for the reasons outlined in the

introduction, the methods in 3.2 are more general and elementary.

A.1 Type An using norms

Because of the bijection between partitions of n + 1 and conjugacy classes in

type An, we will refer to the conjugacy classes of W (An) by Cα, for α ` n + 1.

We denote the length of the shortest element(s) in Cα by lα.

In [DJ1], the following definition of length is shown to be equivalent to ours:

(A.1.1) Lemma. Let w ∈ W . Then l(w) = |{(i, j) ∈ N×N | i < j and iw > jw}|.

Let π be a k-cycle, containing integers π1, . . . , πk, with π1 < · · · < πk. We

define the set

P (π) = {(i, j) ∈ {π1, . . . , πk} × {π1, . . . , πk} | i < j and iπ > jπ},

and for any w ∈ W we define,

P(w) = {(i, j) ∈ N × N | i < j and iw > jw}.

Then by Lemma (A.1.1), l(w) = |P(w)|.

(A.1.2) Lemma. Let π be a k-cycle, containing integers π1, . . . , πk, with π1 <

· · · < πk. Then |P (π)| ≥ k − 1.

Proof. The map which identifies πi with i takes π to a coxeter element of Sk, and

preserves the inequalities between pairs of elements. Any coxeter element of Sk

has length ≥ k − 1, and so has ≥ k − 1 pairs satisfying the requirements of the



80

lemma. The inverse image of these pairs provide the required number of pairs for

π. This proves the lemma. �

The following lemma is an easy consequence of (A.1.2).

(A.1.3) Lemma. Let w = π1π2 . . . πt be a product of disjoint cycles πi. Then

l(w) ≥
∑

i=1,...,t |P (πi)|.

Proof. Recall that l(w) = |{(i, j) ∈ N × N | i < j and iw > jw}|. Then for each

πi a disjoint cycle in w, P (πi) will be a subset of this set, and each P (πi) will

have pairwise trivial intersection with any other P (πj). So P(w) will contain the

(disjoint) union of all P (πi). �

(A.1.4) Lemma. Let w be a shortest element in its conjugacy class Cλ. We can

write w as a product of disjoint cycles, w = π1 . . . πt. Then

l(w) =
∑

i=1,...,t

|P (πi)|.

Proof. Consider the Coxeter element wλ in Cλ. Suppose λ = (λ1, . . . , λt). Then

wλ = (12 . . . λ1)(λ1 + 1 . . . λ1 + λ2)(. . . ) . . . is a shortest element of C. Clearly

there are no pairs (i, j) ∈ N × N such that i < j and iwλ > jwλ when i and j are

from different cycles of wλ.

Thus {(i, j) ∈ N × N | i < j and iwλ > jwλ} is the disjoint union of the sets of

pairs of the disjoint cycles in wλ, and so the lemma is proved for wλ.

For any other shortest element w = π1 . . . πt (πi disjoint cycles of length λi),

l(wλ) =
∑

i=1,...,t

(λi − 1)

≤
∑

i=1,...,t

|P (πi)|

≤ l(w)

= l(wλ)

and the lemma is proved. �
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(A.1.5) Lemma. Let w be a shortest element in Cλ. Then each disjoint cycle of

w contains only consecutive integers.

Proof. Suppose w had a cycle whose integer entries were not consecutive. Denote

the entries of this cycle a1, a2, . . . , ap, with ai < ai+1 for all 1 ≤ i ≤ p − 1, and

suppose there exists integers k and j such that aj < k < aj+1.

In a cycle such as this, there must exist an element of {a1, . . . , aj} which is sent

to {aj+1, . . . , ap}, and an element of {aj+1, . . . , ap} which is sent back - otherwise

the cycle would split into two separate cycles.

The integer k is in a cycle sending it either to an integer ≥ k or ≤ k (with

equality if it is in a 1-cycle).

Suppose that it is sent to a number less than k. Then as there is a number x in

{a1, . . . , aj} which is sent to greater than k, the pair (x, k) ∈ P(w). Then l(w) is

at least one longer than minimal length for Cλ, and w cannot be minimal. Alter-

natively, if k were sent to greater than k, then if y is an integer in {aj+1, . . . , ap}

which is sent to less than k, then the pair (k, y) would satisfy our requirements,

and the same conclusion is reached. �

We say that w corresponds to a composition µ = (µ1, µ2, . . . ) if in cycle notation

the integers 1, . . . , µ1 appear in a cycle of their own, the integers µ1+1, . . . , µ1+µ2

appear in a cycle of their own, and so on.

So we have shown that if w is shortest in its conjugacy class, then all its cycles

contain consecutive integers. Thus we have that the set of shortest elements in C

can be partitioned into subsets, each corresponding to a different composition of

n + 1. We now claim that for each composition µ of n + 1, the shortest elements

corresponding to µ are in the same equivalence class under ∼s.

(A.1.6) Lemma. The shortest elements corresponding to the composition µ are

in the same equivalence class under ∼s.

Proof. We can reach all Weyl group elements corresponding to the composition

µ = (µ1, . . . , µt) by conjugating by elements of the parabolic subgroup Sµ1 ×

· · · × Sµt . Since these summands commute, it suffices to consider the shortest

elements obtained by conjugating a single µi-cycle by simple reflections from the
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corresponding summand. But these summands correspond to Coxeter elements of

Young subgroups, which can easily be shown to be equivalent under ∼s, using the

above lemma. �

Dipper and James proved the following result in [DJ2; 2.11].

(A.1.7) Lemma. Let w and u be shortest elements of C corresponding to different

compositions of n + 1, and let h =
∑

w∈W fw(ξ)T̃w ∈ Z(H). Then fw(ξ) = fu(ξ).

We then have the following:

(A.1.8) Proposition. Shortest elements from the same conjugacy class have the

same coefficient in a central element of H.

Proof. We have shown that all shortest elements correspond to a composition of

n + 1. For each composition, we have shown (Lemma (A.1.6)) that the short-

est elements are equivalent under ∼s, and so have the same coefficient. Dipper

and James’ result (Lemma (A.1.7)) tells us that shortest elements from different

compositions also have the same coefficient in a central element. The theorem

follows. �

(A.1.9) Lemma. Suppose there exists a ΓC for C ∈ ccl(W ). If rT̃w ≤ h ∈ Z(H)

for w ∈ Cmin, then rΓC ≤ h also.

Proof. By the above lemma, rT̃Cmin ≤ h. Using the same methods as (3.3.3),

we have that the algorithm A is well-defined when begun on rT̃Cmin (we can use

rΓC as an upper bound). Then, by (3.1.2), all the additions under A are in fact

implications for rT̃Cmin ≤ h. �

(A.1.10) Lemma. If there exists an element LC satisfying the following proper-

ties:

(1) LC |ξ=0 = aT̃C , and

(2) LC − aT̃C contains no shortest elements of any conjugacy class,

then A is well-defined on T̃C or T̃Cmin .

Proof. Using the same methods as (3.3.3), we see that A is well defined when

started on aT̃C , and ends with LC . Consequently, every term of LC has a factor
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of a. Thus we may divide LC by a, obtaining a central element satisfying (3.2.1.1)

and (3.2.1.2). Then (3.3.5) gives us the result. �

We now show the existence in type An of the class elements, using results

of Lenny Jones from [J2]. Despite the new work of Geck and Rouquier ([GR])

described in the next section, this proof in type An remains interesting as it is

entirely elementary and does not need character theory.

The following definition is attributed in [J2] to Hoefsmit and Scott:

(A.1.11) Definition. Let W ′ be a parabolic subgroup of W , and D be the set

of distinguished right coset representatives of W ′ in W . For h ∈ H, we define the

relative norm of h to be

NW,W ′(h) =
∑

d∈D

T̃d−1hT̃d.

The following lemma is vital for the Jones results (see [J2;(2.13)]):

(A.1.12) Lemma. If h ∈ ZH(H(W ′)), then NW,W ′(h) ∈ Z(H).

A parabolic subgroup Wλ of W corresponds to a partition λ of n + 1 in the

following way. If λ = (λ1, . . . , λr) ` n + 1, then we define

Wλ = Wλ1 × · · · × Wλr ,

where

Wλi = 〈sλ1+···+λi−1+1, . . . , sλ1+···+λi−1〉.

[Note that there are many compositions of n + 1 corresponding to the same

partition, each reflecting a permutation of the λi’s. These different compositions

give different (conjugate) parabolic subgroups, but we will focus on the “standard”

representative corresponding to the ordering of the λis which is a partition.]

We denote the Iwahori-Hecke algebra corresponding to the parabolic subgroup

Wλ by Hλ := H(Wλ).

For such a component subgroup Wλi we define wλi to be its Coxeter element

wλi = sλ1+···+λi−1+1 . . . sλ1+···+λi−1, and write lλ =
∑r

i=1(λi − 1) for the length
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of the Coxeter element of Wλ. There is also a corresponding conjugacy class Cλ

of W for each partition λ of n + 1, for which the Coxeter element wλ1 . . . wλr of

Wλ is a shortest representative.

Then for any partition λ ` n + 1, let

ηλ =

r∏

i=1

NWλi−1,1(T̃wλi
)

and

bλ = NW,Wλ
(ηλ).

The main result of [J2] is that the set of bλ for λ ` n + 1 is a Q[ξ]-basis for

Z(H). Our main interest in these elements lies in some of the properties they have

in addition to being a basis. The following properties are largely proven in [J2] at

various points in the paper:

(A.1.13) Proposition. Let w ∈ W and 0 6= r ∈ N[ξ]. Then

(i) ηλ ∈ Z(Hλ),

(ii) bλ ∈ Z(H)+,

(iii) If rT̃w ≤ bλ, then l(w) ≥ lλ,

(iv) If rT̃w ≤ bλ and l(w) = lλ, then w ∈ Cλ,min and r ∈ N,

(v) bλ|ξ=0 = aT̃Cλ
for some a ∈ N.

Proof. (i) [J2;(3.23)].

(ii) The centrality of bλ follows from (A.1.12) and (i), and the positivity follows

since bλ is a sum of products of sums of products of positive elements, and so is

also positive, by (2.1.1).

(iii) [J2;(3.25)].

(iv) [J2;(3.27),(3.28)].

(v) [J2;(3.29)]. �

(A.1.14) Theorem. For each conjugacy class C of W = W (An) there exist

elements LC ∈ Z(H)+ satisfying (A.1.10)(1) and (2).

Proof. We proceed by reverse induction on the length lλ of the shortest element

of the conjugacy class Cλ.
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The longest shortest element of any conjugacy class is that of the Coxeter class,

which corresponds to the partition λ = (n + 1). In this case we have that b(n+1)

satisfies (1) directly from (A.1.13)(v). By (A.1.13)(iii) and (iv), the only elements

of length n are those from C(n+1),min, and these appear with integer coefficient in

b(n+1). Then by (A.1.13)(v), they in fact all have the same coefficient. All other

terms in b(n+1) are strictly longer than n, and not shortest in any conjugacy class,

and so b(n+1) also satisfies (2), and we have the existence of the required LC .

Suppose inductively that for lλ > k we have the existence of LCλ
with the

required properties. Then we also have that ΓCλ
exists for lλ > k, and thus we

have the results of section 3.3 - the well-definedness of the algroithm A - for those

conjugacy classes.

Take a conjugacy class Cλ with lλ = k. The only terms of length k in the

Jones element bλ are elements of Cλ,min. If there are shortest elements of other

conjugacy classes in bλ they must have length strictly greater than k. By (A.1.9),

if rT̃w ≤ bλ for w ∈ Cmin for some C, then rΓC ≤ bλ, and so we may subtract

rΓC from bλ while remaining in Z(H)+. In this way we may remove all shortest

elements other than those of length k from bλ, giving us a positive central element

which specializes to an N-multiple of T̃Cλ
and which contains no other shortest

elements with non-zero coefiicient. In other words, we have an element satisfying

(1) and (2). This proves the theorem. �

(A.1.15) Corollary. In type An we have the following:

(i) For any i ∈ N, Ai(T̃C) and Ai(T̃Cmin) are well-defined, and there exists finite

n, n′ ∈ N such that An(T̃C) = An′

(T̃Cmin) = ΓC satisfies (3.2.1.1) and (3.2.1.2).

(ii) Z(H)+min = { ΓC | C ∈ ccl(W ) }.

(iii) Z(H)+min is an R-basis for Z(H).

Proof. (i) follows from (A.1.10) and (A.1.12).

(ii) follows from (i) and (3.4.2).

(iii) follows from (ii) and (3.4.3). �

A.2 Other crystallographic types using characters

Recent results of Geck and Rouquier ([GR]) provide the type of element required
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for the results in section 3.3 in order to prove the algorithm is well-defined for all

types of Weyl group, and that the primitive minimal positive central elements are

a basis for Z(H).

Define the irreducible characters φi : HQ(ξ) → Q(ξ). These are Q(ξ)-linear

maps with the property that for any a, b ∈ HQ(ξ), φi(ab) = φi(ba). Starkey and

Ram (independently in [C2] and [R] respectively) have shown in type An that

these characters are constant on shortest elements of conjugacy classes. Geck and

Pfeiffer extended this to all types of finite Weyl group in [GP] using (1.1.2).

Since HQ(ξ) is isomorphic to Q(ξ)W , we have that the number of irreducible

characters is the same as the number of conjugacy classes. Theorem (1.1.2) shows

that we may write the image of any generator T̃w under any central function

φ as an N[ξ]-linear combination of images of shortest elements from conjugacy

classes, using the relations φ(T̃sds) = φ(T̃sdT̃s) = φ(T̃sT̃sd) = φ(T̃d + ξT̃sd) =

φ(T̃d) + ξφ(T̃sd) and φ(T̃ds) = φ(T̃sd) for d ∈ D〈s〉,〈s〉. Thus we may write

φi(T̃y) =
∑

C

fy,Cφi(T̃wC
)

for any y ∈ W , all irreducible characters φi, and for some wC ∈ Cmin. Further, the

fy,C are unique since the irreducible characters are linearly independent (which

means the matrix (φi(T̃wCj
)) is invertible).

Geck and Rouquier ([GR;Sect. 5]) then point out that the functions fC : H →

Z[ξ] defined on the generators by sending T̃w to fw,C are central, and that for

any central function ϕ ∈ CF (H) we may write ϕ =
∑

C ϕ(T̃wC
)fC , which means

the set {fC : C ∈ ccl(W )} is a Z[ξ]-basis for CF (H). They then call upon the

correspondence between central functions and central elements to get elements zC

which form a Z[ξ]-basis for the centre of H, zC =
∑

w∈W fC(T̃w)T̃w−1 . [Note that

since Geck and Rouquier work over Z[q, q−1], they need an additional weighting

factor q−l(w) which is not necessary over Z[ξ].] A key part of their proof is the

recognition that for wC′ ∈ C ′
min, fwC′ ,C = δC,C′ .

Our methods then provide an alternative proof that this set of elements is a

basis for the centre:
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(A.2.1) Lemma. The set {
∑

w∈W fC(T̃w)T̃w | C ∈ ccl(W )} satisfies properties

(3.2.1.1) and (3.2.1.2), and so zC = ΓC for all C.

Proof. The centrality follows directly from (3.1.1) and the relations φ(T̃sds) =

φ(T̃d) + ξφ(T̃ds) and φ(T̃ds) = φ(T̃sd) for any d ∈ D〈s〉,〈s〉 and any central function

φ.

The image of a shortest element of a conjugacy class under fC is either one or

zero, so we have that the coefficient of a shortest element T̃wC′ in
∑

w∈W fC(T̃w)T̃w

is one if C ′ = C and zero otherwise. Thus (3.2.1.2) is satisfied.

If w ∈ C ′ for any conjugacy class C ′ of W , then fC(T̃w) = fC(T̃wC′ )+ξX where

X is an N[ξ]-linear combination of images fC(T̃u). So since fC(T̃wC′ ) = 0 unless

C = C ′, and one if it does, we have
∑

w∈W fC(T̃w)T̃w|ξ=0 = T̃C , so (3.2.1.1) is

satisfied.

Finally the equality
∑

w∈W fC(T̃w)T̃w =
∑

w∈W fC(T̃w)T̃w−1 follows since the

latter also satisfies both (3.2.1.1) and (3.2.1.2), and so by (3.2.6) they are the same,

and are the element ΓC . �

The existence of these elements then provides us with the means to draw our

general conclusion a la (3.4.3):

(A.2.2) Theorem. Z(H)+min = {
∑

w∈W fC(T̃w)T̃w | C ∈ ccl(W )}, and is a Z[ξ]-

basis for Z(H).
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Appendix B

Conjugacy classes in type H3

There are two conjugacy classes which are just singleton sets:

{1}, and {s1ts1ts1s2s1ts1s2ts1ts1s2}

(the shortest and longest words in W ). There are eight more conjugacy classes,

which we display below. We will abbreviate s1 to simply 1, and s2 to 2.

It is interesting to observe the pairing of conjugacy classes in H3 - each one has

an “inverse”, graphically upside down.
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