
Journal of Algebra 221, 1–28 (1999)
Article ID jabr.1998.7925, available online at http://www.idealibrary.com on

The Minimal Basis for the Centre of an
Iwahori–Hecke Algebra

Andrew Francis

School of Mathematics, University of New South Wales, Sydney 2052, Australia and
Department of Mathematics, University of Virginia,

Charlottesville, Virginia 22903
E-mail: af2f@virginia.edu

Communicated by Leonard L. Scott, Jr.

Received November 7, 1997

This paper arose out of an attempt to generalize the ��q; q−1�-basis for the centre
of an Iwahori–Hecke algebra Hq found by Jones to ��q; q−1� and to other types.
Considering the Iwahori–Hecke algebra H over a subring ��ξ� of ��q1/2; q−1/2�,
where ξ = q1/2 − q−1/2, we use a new and natural definition of positivity on H
to describe the “minimal” ��ξ�-basis for Z�H� in terms of a partial order on the
positive part of H . The main result is to show that this minimal basis is the set of
“primitive” minimal elements of the positive part of the centre, for any Weyl group.
In addition, the primitive minimal positive central elements can be characterized
as exactly those positive central elements which specialize (on setting ξ = 0, the
equivalent of setting q = 1 in ��q1/2; q−1/2�) to the sum of elements in a conjugacy
class, and which apart from the shortest elements from that conjugacy class sum
contain no other terms corresponding to shortest elements of any conjugacy class.
A constructive algorithm is provided for obtaining the minimal basis. We use the
results of Jones to achieve the result in type An without the need for character
theory, and give the result for all Weyl groups using the character theoretical results
of Geck and Rouquier. Finally we discuss the non-crystallographic cases and give
some explicit examples. © 1999 Academic Press

INTRODUCTION

This paper falls into the gènre of work attempting to understand the rela-
tionship between the Weyl group algebras and their Iwahori–Hecke algebra
counterparts. Key in this area are the results of Tits, Benson–Curtis, and
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Lusztig, proving that the Iwahori–Hecke algebra over a field K is isomor-
phic to the group algebra of W over K if it is semisimple (see [CR, Sect. 68]
or [C1, Sect. 10.11]), and the cell structure of H defined by Kazhdan and
Lusztig (see [KL]) which provided the tools to make the isomorphism ex-
plicit (as in [L]).

Specifically here we look at analogies between the structures of their
centres. A basis for the centre of H over K can be easily obtained using
the norm structure of Hoefsmit and Scott described by Jones in [J]. This
paper of Jones in 1990 also extended this approach to a “relative norm,”
with which he was able to explicitly describe a basis for the centre of type
An over ��q; q−1�.

This paper was something of a breakthrough as little had been known
until then about what a basis for the centre might actually look like.
However, the real key has turned out to be the Weyl group result of
Geck and Pfeiffer [GP], showing one can find a sequence of conjuga-
tions by simple reflections (without increasing length) linking any element
with a shortest element of its conjugacy class (see Theorem 1.1 below).
This enabled them to extend the independent results of Starkey [C2]
and Ram [R] from type An to all types—they showed that the irre-
ducible characters of H are constant on shortest elements of a conjugacy
class.

Most recently Geck and Rouquier [GR] used this to obtain a ��q; q−1�-
basis for the centre of H for all Weyl groups, in terms of the irreducible
characters of H . The basis we obtain is identical to theirs.

The techniques in this paper are twofold: use of partial order on the pos-
itive part of the centre; and use of an elementary understanding of the cen-
tralizer of the element corresponding to a simple reflection in H , to define
a constructive algorithm to build elements of the centre. The main results
are then obtained: that the primitive minimal positive central elements are
a ��ξ�-basis for the centre, and have a very simple characterization; and
that the algorithm constructing such elements is well defined. The major
part is more-or-less combinatorial—showing that these two results depend
only on the existence of certain types of elements. Then we prove the ex-
istence of the required elements, adapting in type An the basis described
by Jones, and in general using the basis found by Geck and Rouquier.
Thus the result for type An stands independent of any character theory
results.

For simplicity we present the material here in the one-parameter case (in
general, there will be a different parameter qs for each generator s ∈ S, with
qs = qt when s and t are conjugate). The results also hold for the multi-
parameter case, and are presented in that generality in [Fr]. The approaches
in this paper are also being applied to centralizers of parabolic subalgebras,
and to the centres of affine Hecke algebras.
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1. PRELIMINARIES

Let W be a Weyl group with generating set S, and length function
lx W → �. Then for s; s′ ∈ S, W has relations

s2 = 1

�ss′�mss′ = 1

for some mss′ ∈ �. Each Weyl group is partitioned into conjugacy classes
C. Let lC be the length of the shortest elements in C and let Cmin be the
set of shortest elements in C. Let ccl�W � be the set of conjugacy classes
in W .

The main Weyl group result which we will need is the following conjugacy
theorem from [GP]. First we need to introduce some notation.

For w;w′ ∈ W and s ∈ S, we say w −→s w
′ if sws = w′ and l�w� ≥ l�w′�.

For example, later we will be working with double cosets �s�d�s� for
d distinguished, which consist of elements �d; ds; sd; sds� if ds 6= sd or
�d; ds� if ds = sd. In the former case, the only relations within the double
coset are sds −→s d, sd −→s ds, and ds −→s sd. There are no non-trivial
relations in the case that ds = sd, just d −→s d and ds −→s ds.

If there is a sequence of elements w0;w1; : : : ; wn ∈ W such that for each
i, wi −→si

wi+1 for some si ∈ S, then we simply write w0 → wn.

(1.1) Theorem (Geck–Pfeiffer). Let C ∈ ccl�W �. Then for each w ∈ C,
there exists w′ ∈ Cmin such that w→ w′.

The theorem shows that for any element of a conjugacy class C we may
find a sequence of conjugations by simple reflections which never increases
in length, and ends with a shortest element of C. Another way to think of
the theorem is found in the following corollary. The following equivalence
classes are also defined in [GP, Sect. 3] and used to prove (1.1) for the
exceptional types.

For any conjugacy class C and s ∈ S we can define an equivalence relation
∼s on C by writing w ∼s u if sws = u and l�w� = l�u�. We then define a
larger equivalence class ∼S to be generated by the relations ∼s for s ∈ S.
The ∼S-equivalence classes consist of elements of the same length which
can be reached from each other by a finite sequence of conjugations by
simple reflections, where each step in the sequence gives an element of the
same length.

Each conjugacy class C is the disjoint union of such ∼S-equivalence
classes, so we can specify uniquely the class by choosing a representative
from it. Thus we denote the ∼S-equivalence class containing w by Cw.

(1.2) Corollary. Let w ∈ C \ Cmin. Then there exists u ∈ Cw and t ∈ S
such that l�tut� = l�u� − 2.
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This means that in every equivalence class Cw not containing shortest
elements, there is at least one element which shortens on conjugation by a
simple reflection.

We define the Iwahori–Hecke algebra Hq corresponding to W to be the
associative ��q1/2; q−1/2�-algebra generated by the set �Ts�s∈S , with rela-
tions

T 2
s = qT1 + �q− 1�Ts �∗�

and, if w = s1 · · · si is a reduced expression for w,

Tw = Ts1 · · ·Tsi :

We will find it useful to change the base ring of Hq from ��q1/2; q−1/2�
to ��ξ� by setting T̃s = q−1/2Ts and ξ = q1/2 − q−1/2 to give us a ��ξ�-
subalgebra denoted H . The relation �∗� in H then becomes

T̃ 2
s = T̃1 + ξT̃s;

which has the obvious benefit of being simpler. It also has valuable positivity
properties, since for any two basis elements T̃x and T̃y ∈ H , their product
T̃xT̃y =

∑
w∈W fx; y;wT̃w has all coefficients fx; y;w in ��ξ�. Thus the product

of any two elements of H whose coefficients are from ��ξ� (that is, they
are linear combinations of the T̃w over ��ξ�) also has coefficients in ��ξ�.
These observations motivate the definition of H+ in the next section.

If X is a subset of W (for example, a conjugacy class), we denote by T̃X
the sum of generators T̃x for x ∈ X. That is,

T̃X x=
∑
x∈X

T̃x:

Hq can be obtained from H by the following change of coefficient ring:

Hq ∼= ��q1/2; q−1/2� ⊗��ξ� H :

Consequently the centre of H embeds in the centre of Hq, and a ��ξ�-
basis of Z�H� will become a ��q1/2; q−1/2�-basis for Z�Hq� after changing
ξ back to q1/2 − q−1/2 and T̃w back to q−�l�w��/2Tw. We deal with this, and
with obtaining a ��q; q−1�-basis from the minimal ��ξ�-basis, at the end of
Section 4.

Frequent use will be made of specializing the parameter ξ to zero (equiv-
alent to setting q = 1 in Hq), so for any h ∈ H , we write h0 = h�ξ=0 for this
specialization.
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2. THE MAIN THEOREM

We now make a brief excursion into higher generality to define positivity
and obtain some basic consequences of the definition.

Let A be a free ��ξ�-module with basis X = �x1; : : : ; xn� and let A0 be
the free �-module with the same basis. Then A = ��ξ�X and A0 = �X.

We may also consider A as a �-module with basis �ξixj � for i ≥ 0 and
1 ≤ j ≤ n�. Then we have

A =∑
i≥0

A0ξ
i:

It would be natural to consider ��ξ� to be the positive part of the ring
��ξ�, and there is a similarly natural partial order on the elements of ��ξ�:
if f = ∑i≥0 fiξ

i and g = ∑i≥0 giξ
i for fi; gi ∈ �, then f ≤ g if and only if

fi ≤ gi for all i. An equivalent expression of this is to say f ≤ g if and only
if g − f ∈ ��ξ�.

This partial order on the positive part of ��ξ� induces a partial order on
the positive part of any ��ξ�-module. Since A = ��ξ�X, define the positive
part of A to be A+ = ��ξ�X. Define a partial order on A+ by saying that
if a =∑x∈X axx and b =∑x∈X bxx, where ax; bx ∈ ��ξ�, then a ≤ b in A+

if and only if ax ≤ bx in ��ξ� for all x ∈ X. This is equivalent to saying
a ≤ b in A+ if and only if b− a ∈ A+.

There is an equally obvious partial order on A+0 = �X. If a0 =
∑
x∈X cxx

and b0 =
∑
x∈X dxx for ax; bx ∈ � then a0 ≤ b0 in A0 if and only if cx ≤ dx

in �, which is equivalent to having b0 − a0 ∈ A+0 .
If we were to turn A into a ��ξ�-algebra by defining a multiplication

between its basis elements xi such that xixj ∈
∑n
i=1 ��ξ�xi, then we have

the following self-evident lemma:

(2.1) Lemma. If xixj ∈
∑n
k=1 ��ξ�xk for all 1 ≤ i; j ≤ n; then sums and

products of elements of A+ are also in A+.

For any ��ξ�-submodule B of A, let min�B+� be the set of non-zero
minimal elements of the partial ordering �B+;≤�, and similarly let min�B+0 �
be the set of non-zero minimal elements of the poset �B+0 ;≤0�.

The elements of min�A+0 � are simply the elements of X (which are a
�-basis for A0), and the elements of min�A+� are ξi-multiples of elements
of X (which are a �-basis for A). The sets min�A+� and min�B+� are not
finite—for example, if a 6= 0 is minimal in B+, then so is ξa, and so is ξ2a,
and so on. We restrict attention to a set of representatives of min�B+� (so
as to exclude ξ-multiples) by saying a is primitive if

a0 ∈
∑
xi∈X

�xi and a0 6= 0:
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Let B+min be the set of primitive minimal elements of the poset �B+;≤�.
In other words, B+min is the set of minimal elements of B+ which do not
specialize to zero. We then have

min�B+� = ⋃
i≥0

ξiB+min:

In this paper we look at A = H with ��ξ�-basis �T̃w � w ∈ W �, and
B = Z�H�. The multiplication between the elements T̃w ∈ H+ has the pos-
itivity property required for Lemma 2.1, so the conclusion holds: that the
sums and products of elements of H+ are also in H+. This is a simple yet
significant benefit of moving to the ring ��ξ�.

For the group algebra �W , we have that primitive minimal positive ele-
ments of the centre Z��W � are conjugacy class sums, and so form a �-basis
of the centre. The analogous result would be that Z�H�+min is a ��ξ�-basis
for Z�H�, and this is our main result:

(2.2) Main Theorem. Let W be any Weyl group. Then

(i) Z�H�+min is a ��ξ�-basis for Z�H�;
(ii) h ∈ Z�H�+min if and only if

(a) h�ξ=0 = T̃C for some C ∈ ccl�W �; and

(b) h− T̃C contains no shortest elements of any conjugacy class.

The foundations for the proof of this are laid down in Section 4, where
the result is reduced to the existence of elements h with similar character-
istics as shown in (2.2)(ii) above.

We will first present the case when H is type An (in Section 5), as these
results were achieved independently of the result of Geck and Rouquier.
Theorem 2.2 for the type An case appears in (5.4). The type An results also
use only elementary methods, and do not require any character theory, so
may be interesting in their own right as an extension of the work of Jones.
The general Weyl group case is presented in Section 6, where we need the
existence of the elements described by Geck and Rouquier (using character
theory) to get our results. The proof of (2.2) for general Weyl groups is
given after (6.1).

3. THE CENTRALIZER OF AN ELEMENT ASSOCIATED
TO A SIMPLE REFLECTION IN H

We will call the set of elements conjugate under s ∈ S an s-conjugacy
class. (This is sometimes called the orbit of �s� in W , under the conjuga-
tion action.) Every s-conjugacy class is contained in a double coset �s�d�s�,
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for some d ∈ $�s�; �s�, the set of distinguished �s�-�s� double coset repre-
sentatives in W . The double cosets may be classified according to whether
the intersection �s�d ∩ �s� = 1 or �s�, and this provides a means of listing
all the possible types of s-conjugacy class.

If the intersection is 1, then ds 6= sd, and otherwise ds = sd. So every
double coset either consists of elements �d; ds; sd; sds� in the trivial inter-
section case, or �d; ds� in the non-trivial intersection case. We can then list
the s-conjugacy classes as follows: if ds 6= sd, we have �d; sds� and �sd; ds�;
if ds = sd we have �d� and �ds�.

The basis for the centralizer of s in �W then is the set of all elements
of form d or ds if ds = sd, and d + sds or ds + sd if ds 6= sd, and these
are the minimal elements of �Z�W �s�;≤0�. We will give the Iwahori–Hecke
algebra analogy in (3.9).

We define the centralizer of the subalgebra generated by T̃s in H to be
the set

ZH�T̃s� x= �h ∈ H x hT̃s = T̃sh�:
The following lemma uses methods borrowed from those in [DJ, (2.4)].

(3.1) Lemma. Let c = ∑w∈W rwT̃w for rw ∈ ��ξ�. Then c is in ZH�T̃s� if
and only if for all d distinguished in �s�d�s� such that sd 6= ds we have

(i) rds = rsd; and
(ii) rsds = rd + ξrds.

Proof. First c is in the centralizer if and only if the sum of terms from
each double coset commutes with T̃s.

Given any double coset with d distinguished, if ds = sd then the double
coset consists of the elements d and ds, and each corresponding element
T̃d and T̃ds commutes with T̃s. Thus the sum rdT̃d + rdsT̃ds commutes with
T̃s for any rd; rds ∈ ��ξ�.

If ds 6= sd, then the double coset sum is rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds .
This commutes with T̃s if and only if

T̃s�rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds� = �rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds�T̃s:
The left-hand side is

rdT̃sd + rdsT̃sds + rsd�T̃d + ξT̃sd� + rsds�T̃ds + ξT̃sds�
= rsdT̃d + rsdsT̃ds + �rd + ξrsd�T̃sd + �rds + ξrsds�T̃sds;

and the right-hand side is

rdT̃ds + rds�T̃d + ξT̃ds� + rsdT̃sds + rsds�T̃sd + ξT̃sds�
= rdsT̃d + �rd + ξrds�T̃ds + rsdsT̃sd + �rsd + ξrsds�T̃sds:

Equating coefficients gives the result.
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This lemma has some direct and useful consequences for elements of the
centre, and in particular the positive part of the centre.

(3.2) Corollary. If h ∈ Z�H�, then the coefficients of T̃w and T̃Cw in
h are equal.

If in addition h ∈ Z�H�+; then for d ∈ $�s�; �s�; and r ∈ ��ξ� we have:

(i) rT̃d ≤ h H⇒ r�T̃d + T̃sds� ≤ h;
(ii) rT̃ds or rT̃sd ≤ h H⇒ r�T̃ds + T̃sd + ξT̃sds� ≤ h;

(iii) T̃sds ≤ h H⇒ T̃d + T̃sds ≤ h.

(3.3) Proposition. Suppose w ∈ W is not minimal in its conjugacy class;
and c ∈ Z�H�. Then the coefficient of T̃w in c is an ��ξ�-linear combination
of coefficients of strictly shorter elements in c. In fact; it is an ��ξ�-linear
combination of the coefficients of shortest elements of conjugacy classes.

Proof. The first statement follows from the first statement of (3.2), (1.2),
and (3.1)(ii). The second follows by induction.

(3.4) Corollary. If there exists an h ∈ Z�H�; such that h0 = aT̃C for
a ∈ � and there are no shortest elements from any conjugacy class in h− h0;
then h is unique with these properties.

Proof. Suppose h′ ∈ Z�H� has the property that h′0 = aT̃C and h′ − h′0
has no shortest elements from any conjugacy class. Then h′ −h ∈ Z�H� has
no shortest elements of any conjugacy class. Thus by (3.3), h′ − h = 0.

We return to the centralizer of T̃s in the Iwahori–Hecke algebra. The
minimal �-basis for Z�W �s� is the set of s-conjugacy class sums, as noted
at the start of this section. We now provide the analogy in H .

(3.5) Definition. Let d be distinguished in �s�d�s�. We define the fol-
lowing four types of elements, and call them s-class elements because they
correspond to s-conjugacy classes:

Type I; d ∈ ZW �s�x bI
d = T̃d;

bI
ds = T̃ds;

Type II; d 6∈ ZW �s�x bII
d = T̃d + T̃sds;
bII
ds = T̃ds + T̃sd + ξT̃sds:

Note that every distinguished �s�-�s�-double coset representative either
commutes with s or it does not. Also note that when ξ = 0, these elements
correspond to sums of s-conjugate elements, and each element of the �s�-
�s�-double coset appears with coefficient 1 in exactly one s-class element.

Later we will use diagrams to represent the structure of central elements,
and the core “cells" of these diagrams will be those corresponding to s-class
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elements. The Type II s-class elements may be represented graphically by
the diagrams

T̃d T̃ds T̃sd

T̃sds ξT̃sds

s

s

s s

bII
d bII

ds

�3:6�

(3.7) Proposition. The set of s-class elements �bI
d; b

I
ds; b

II
d ; b

II
ds � d ∈

$�s�; �s�� is a ��ξ�-basis for ZH�T̃s�.
Proof. On specialization to ξ = 0, each s-class element becomes a sum

of s-conjugate elements in the group algebra. Such sums are a basis for the
centralizer of s in the group algebra, and in particular are linearly inde-
pendent. It follows that the s-class elements are also linearly independent.
Their centrality is also easy to check.

Let h be an element of ZH�T̃s�, and write rw for the coefficient of T̃w in h.
Then, as in the proof for 3.1, we may write h as a ��ξ�-linear combination
of sums of terms corresponding to elements in an �s�-�s� double coset. If
the distinguished representative of the double coset is in the centralizer
ZW �s�, then rdT̃d + rdsT̃ds = rdbI

d + rdsbI
ds—a linear combination of s-class

elements—so we need only to check the case when d 6∈ ZW �s�. Using the
relations from (3.1), we have

rdT̃d + rdsT̃ds + rsdT̃sd + rsdsT̃sds = rdT̃d + rdsT̃ds + rdsT̃sd + �rd + ξrds�T̃sds
= rd�T̃d + T̃sds� + rds�T̃ds + T̃sd + ξT̃sds�;

which is a linear combination of s-class elements. Thus we have that any
h ∈ ZH�T̃s� may be written

h = ∑
d∈$�s�; �s�
d∈ZW �s�

(
rdb

I
d + rdsbI

ds

)+ ∑
d∈$�s�; �s�
d 6∈ZW �s�

(
rdb

II
d + rdsbII

ds

)
;

where rw is the coefficient of T̃w in h. Thus h is a linear combination of
s-class elements, and spanning follows.

(3.8) Corollary. Let $�s�; �s� be the set of distinguished �s�-�s�-double
coset representatives in W . Then dimZH�T̃s� = 2�$�s�;�s��.

Proof. For each double coset, there are two basis elements for
ZH�T̃s�.
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An element of the centre is also an element of any centralizer in H ,
and in particular the centralizers of elements T̃s for s ∈ S. Using the same
principle as in Corollary 3.4, it may thus be represented as a graph with
terms of the form ξkT̃w as nodes, and lines labelled by simple reflections
connecting each node with the other terms in its s-class element for each
s ∈ S. This provides a graphical way to check if an element is in the centre:
ensure that for each s ∈ S every node is part of a unique s-class element
subgraph.

(3.9) Lemma. The set of all s-class elements is the set ZH�T̃s�+min.

Proof. The s-class elements are all clearly primitive, so we need to show
they are minimal in ZH�T̃s�+.

Every positive element of the centralizer can be written as an ��ξ�-
multiple of an element which has non-zero specialization (to ξ = 0), so
it suffices to show that any element with non-zero specialization is greater
than an s-class element. Let h be such an element.

The fact that h has non-zero specialization means that there is at least
one term rwT̃w ≤ h with integer coefficient rw ∈ �, and w must belong to
some �s�-�s� double coset with distinguished representative d say. We may
suppose that ds 6= sd since ds = sd implies rwT̃w would be a �-multiple of
an s-class element of Type I on its own, meaning that an s-class element
would certainly be less than h.

Note that since rw is an integer, any integer multiple of T̃w will be less
than h so long as the integer is less than rw. In particular, T̃w ≤ h. Thus for
simplicity we may suppose that at least one of T̃d, T̃sd, T̃ds, or T̃sds must be
less than h, for some d. Then (3.2) gives that h is greater than some s-class
element.

This completes the proof.

4. CONSTRUCTING CENTRAL ELEMENTS

Given the s-class element basis for the centralizer of T̃s in H for any s,
we may write a central element as a linear combination of s-class elements
for any s ∈ S. Indeed, for any element h ∈ H+ and s ∈ S we may write h as
a linear combination hs of s-class elements, plus a linear combination h′s of
terms ξkT̃w which are neither ��ξ�-multiples of complete s-class elements
(of type I) on their own, nor can be summed with any other terms in h′s
to create an ��ξ�-multiple of an s-class element. In other words, hs is a
maximal linear combination of s-class elements less than or equal to h.

[Note however that we do not claim that hs is the unique maximal linear
combination of s-class elements less than h. This is not possible in general,
as for example we could have ξkT̃sds + ξkT̃d + ξk−1T̃sd + ξk−1T̃ds less than
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h for some d ∈ $�s�; �s�, and then either ξk�T̃d + T̃sds� or ξk−1�T̃ds + T̃sd +
ξT̃sds� are s-class elements which could be put into hs.]

Having decomposed h ∈ H+ in such a manner into h = hs + h′s, we may
then add terms to complete s-class elements containing the terms in h′s.
That is, we may add terms to h to create a new element (say h̄ ≥ h) which
is a linear combination of s-class elements. In other words, h̄ is a minimal
element of ZH�T̃s� greater than or equal to h. (Note again we do not claim
uniqueness for such a minimal centralizer element greater than h. For all
terms in h′s not of the form ξkT̃sds (for d ∈ $�s�; �s�) the added terms will
in fact be unique, but the case of ξkT̃sds could be considered either as part
of the s-class element bII

d or bII
ds, if k ≥ 1).

This describes the nucleus of an algorithm for constructing a central el-
ement containing a given non-central element. We could continue to con-
struct centralizer elements corresponding to different s ∈ S by adding more
and more terms until we (hopefully) eventually create an element in all
centralizers—the centre. To ensure the algorithm stops, however (and does
not continue to add elements ad infinitum), we need to either: ensure that
terms of the form ξkT̃sds for d ∈ $�s�; �s� never occur in h′s for any s and
for any stage in the process (or define the algorithm more closely to ensure
this); or provide an upper bound in the centre which controls the additions
to h.

Assuming that for any h ∈ H+ we can find a positive central element
c greater than h (which we can certainly do: for example, h ≤ NW; 1�h� ∈
Z�H�—see (5.1) for a definition), we can apply the latter approach to en-
sure we can always construct a central element greater than or equal to h
and less than or equal to c, no matter in what order of additions we pro-
ceed. If we need to complete an s-class element for which ξkT̃sds is in h, we
need to choose whether to consider it part of bII

d or bII
ds—in other words,

whether to add ξkT̃d or ξk−1�T̃sd + T̃ds�. We can decide this on the basis
of which is less than c − h. Then our new element will remain less than or
equal to c. If both options are less than c − h, the choice can be arbitrary.
Terms other than ξkT̃sds are in uniquely defined s-class elements, and so a
choice will never need to be made (see Lemma 3.2(ii) and (iii)).

Suppose h = hs + h′s ∈ H+, with hs a maximal element of ZH�T̃s� less
than h. Letms be the length of the shortest term in h′s (for non-zero h′s). We
now formalize the above, adding some extra conditions, with the following
definition:

(4.1) Definition. Let h ∈ H+, with h ≤ c ∈ Z�H�+. Define the algo-
rithm "c to conduct the following sequence of procedures:

(i) split h into h = hs + h′s for s ∈ S with hs maximal in ZH�T̃s� less
than or equal to h;
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(ii) if h′s=0 for all s ∈ S, stop;
(ii′) otherwise, evaluate ms for each s, and choose s ∈ S such that ms

is minimal;
(iii) add terms from c − h which complete the s-class elements con-

taining terms in h′s of length ms.
(iv) declare the new element to be "c�h�, and repeat from (i) with

a new element.

Note that here we do not make h into an element of a centralizer of T̃s
for some s immediately. We find the shortest term in h which is not in a
complete s-class element for some s ∈ S, and add the necessary terms to
make that particular s-class element complete. The purpose of this aspect
of the definition is that later we will use induction on the length ms of the
shortest term in an incomplete s-class element.

An immediate consequence of the definition is the following.

(4.2) Lemma. Suppose that after n iterations of "c the shortest term of
"n
c �h� in an incomplete s-class element for some s ∈ S has length k—that is;

ms = k in "n
c �h�. Then every element of length < k in "n

c �h� is in a complete
s-class element, for all s ∈ S.

Our main aim is to construct basis elements for the centre which special-
ize to the conjugacy class sum T̃C . We now show that given the existence of
certain types of positive central elements to use as upper bounds, we can
start the algorithm on T̃C and never need to add shorter elements. With
this, the algorithm becomes uniquely defined, and it is never necessary to
make a choice relative to an upper bound. In other words, we will show
paradoxically that given the existence of certain types of element which we
can use as an upper bound, upper bounds are not necessary when starting
with T̃C .

(4.3) Proposition. Suppose that for each conjugacy class C there exists
an element LC ∈ Z�H�+ with the following properties:

(L1) LC �ξ=0 = aT̃C for some a ∈ �y and

(L2) LC − aT̃C contains no shortest elements from any conjugacy class.

Then "i
LC
�aT̃C� never needs to refer to the upper bound LC for any i ∈ �.

Proof. There is only need to refer to the upper bound if it is necessary
at some point to decide whether to consider an element of the form ξkT̃sds
(for some d ∈ $�s�; �s�) as part of the s-class element bII

d or bII
ds. Equivalently,

we will need to refer to the upper bound if it is necessary at some point to
add a shorter element or elements. We claim that under the conditions of
the proposition it is never necessary to add shorter elements at any point in
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the construction, and we prove this by induction on the number of repeats
of "LC

.
Consider the first additions made to aT̃C via "LC

. Since for any s ∈ S,
aT̃C may be written as a linear combination of sums of s-conjugate ele-
ments, the only s-class elements which could possibly be incomplete are
those of type bII

ds = T̃ds + T̃sd + ξT̃sds for some d ∈ $�s�; �s�. Thus the only
additions to aT̃C will be of form aξT̃sds for some s ∈ S and d ∈ $�s�; �s�,
and these are uniquely determined without reference to LC .

Suppose by induction that after k repeats of "LC
, no shorter additions

have been made—equivalently, no choice has been made at any point in
the construction so far: no reference to LC has been required.

Then all terms of length shorter than ms in "k
LC
�aT̃C� are in complete

s-class elements for all s ∈ S (as pointed out in Lemma 4.2).
Now suppose a shorter addition were required to complete the s-class

element containing ξiT̃w of length l�w� = ms in "k
LC
�aT̃C�. Then clearly

w = sds for some d ∈ $�s�; �s�, and we will need to add either ξiT̃d or
ξi−1�T̃ds + T̃sd�. The added element, being strictly shorter, will also reduce
ms for "k+1

LC
�aT̃C�, since there were no incomplete elements of that length

or shorter in "k
LC
�aT̃C�.

We will then need to add all of ξiT̃Cd (resp. ξi−1T̃Cds) if ξiT̃d (resp.
ξi−1�T̃ds + T̃ds�) is added, by (4.1), without increasing ms. Thus we will
be adding at least one further element which cancels with some s ∈ S, and
which will thus require further strictly shorter additions via the algorithm
(by Corollary 1.2). This will continue, so long as d 6∈ Cmin (resp. ds 6∈ Cmin).
Thus, in a finite number of steps (since all of Cd (resp. Cds) will be added in
a finite number of steps), we will add shortest elements of some conjugacy
class.

But these additions must come from h = LC −"k′
LC
�aT̃C� (where the k′th

step is the one requiring the addition of shorter elements), and since there
are no shortest elements from any conjugacy class in h (the only shortest
elements in LC are those in aT̃C , which are also in "i

LC
�aT̃C� for any i ∈ �),

we have a contradiction. Thus there is never a need to add strictly shorter
elements at any point in the algorithm, and hence we never need to refer
to the upper bound LC .

Thus we have that under specific conditions (that we start with aT̃C and
that elements with the properties of LC exist), the algorithm is well defined
without reference to any upper bound at all. This motivates us to make the
following definition of a simpler algorithm.

(4.4) Definition. Let h ∈ H+. Define the algorithm ! to conduct the
following procedures.
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(i) Split h into h = hs + h′s for each s ∈ S such that hs is maximal
in ZH�T̃s� less than or equal to h;

(ii) if h′s=0 for all s ∈ S, stop;
(ii)′ otherwise evaluate ms for each s such that h′s 6= 0, and choose

s ∈ S such that ms is minimal;
(iii) add terms to h which complete the s-class elements of those

terms in h′s of length ms;
(iv) declare the new element to be !�h�, and repeat from (i) with

the new element.

(4.5) Theorem. The following are equivalent:

(i) There exists an element LC ∈ Z�H�+ which satisfies (L1) and (L2)
from (4.3);

(ii) The algorithm !i�T̃C� is well defined for all i ∈ �y
(iii) There exists an element 0C = !n�T̃C� ∈ Z�H�+ for some n ∈ �

which satisfies

(G1) 0C �ξ=0 = T̃C; and

(G2) 0C − T̃C contains no shortest elements of any conjugacy class.

Proof. Part (iii) clearly implies (i), since (L1) and (L2) are satisfied by
0C with a = 1, so it will suffice to show (i) implies (ii) and (ii) implies (iii).

We have shown (in (4.3)) that when started with aT̃C , the algorithm "LC

does not refer to the upper bound LC . Thus "i
LC
�aT̃C� = !i�aT̃C� for all

i ∈ �, and there is an integer n such that !n�aT̃C� ∈ Z�H�. Now since all
additions via ! starting with aT̃C are well defined (same length or longer),
they all carry the factor of a. That is, all new additions at the ith step either
have the same coefficient as a term in !i−1�aT̃C�, or they have a coefficient
which is a ξ-multiple of a coefficient in !i−1�aT̃C�. Thus every term added
via ! to aT̃C is a ��ξ�-multiple of a.

Thus 1
a
!n�aT̃C� is in Z�H�+ for some n ∈ �. That is, all coefficients in

1
a
!n�aT̃C� are from ��ξ�. Further, 1

a
!n�aT̃C��ξ=0 = T̃C , and so it satisfies

(L1).
Now !n�aT̃C� contains no shortest elements of non-zero coefficient ex-

cept those in aT̃C , since all initial additions to incomplete s-class elements
in aT̃C were of form ξT̃sds for some d ∈ $�s�; �s�, s ∈ S (in particular, not
shortest in their conjugacy class), and all ensuing additions have been same
length or longer (and thus also not shortest in their conjugacy classes). Thus
1
a
!n�aT̃C� also satisfies (L2). Hence we have the conditions to apply (4.3)

with respect to LC = 1
a
!n�aT̃C�, starting with T̃C . Part (ii) follows.

To get part (iii) from (ii), we simply need to apply ! to T̃C sufficiently
many times to get a central element. Since ! is well defined starting from
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T̃C , it will only add same length or longer, and thus in a finite number
of steps the shortest element not in a complete s-class element (ms) will
increase (for any rT̃w with l�w� = ms, only same-length additions will be the
set Cw, which is finite. Once all terms of Cw are added, the only possible
additions will be strictly longer). Of course, there can be only finitely many
increases in ms, since W is a finite group, and so there exists an n ∈ � such
that !n�T̃C� ∈ Z�H�+. By the same arguments as used showing (i) implies
(ii), we also have that !n�T̃C��ξ=0 = T̃C , and there are no shortest elements
of any conjugacy class in !n�T̃C� other than those from T̃C . Thus (G1) and
(G2) are satisfied, and this completes the proof.

(4.5.1) Remark. It is sufficient to start ! on the sum of the minimal
elements of C, since by (1.1) every element of C can be obtained from
a shortest element by a non-decreasing series of conjugations by simple
reflections. Examples of the algorithm for types B2 and A3 are given in
Sections 8.2 and 8.4, respectively.

(4.6) Corollary. Let C ∈ ccl�W �, and suppose there exists a 0C satisfy-
ing (G1) and (G2) from (4.5). If wC ∈ Cmin and rT̃wC ≤ h ∈ Z�H�+; then
r0C ≤ h.

Proof. First, if rT̃wC ≤ h ∈ Z�H�+, then all elements of Cmin appear in h
with the same coefficient r. (This was shown independently by both Starkey
[C2] and Ram [R] in type An by showing the irreducible characters take
the same value on all shortest elements of a conjugacy class. The result was
extended to all types of Weyl group by Geck and Pfeiffer in [GP]. The type
An result can also be obtained by viewing W �An� as the symmetric group
on n + 1 letters. Each conjugacy class corresponds to a partition of n + 1
which gives a cycle type for the permutation. One can show that shortest
elements corresponding to the same composition of n + 1 have the same
coefficient by showing they are all in the same equivalence class Cw (see
(3.2)). Then a lemma of Dipper and James (in [DJ, (2.11)]) shows the co-
efficients of shortest elements corresponding to different compositions but
the same partition are the same.) Then rT̃C ≤ h also, by Remark 4.5.1. The
remainder follows by noticing that the same-length and longer additions via
the algorithm ! are in fact implications, by (3.2)(ii) and (iii). Thus since
! is well defined when started on T̃C (and so we add only same length or
longer starting with T̃C), we have a chain of necessity which gives the whole
of 0C less than h.

(4.7) Theorem. If there exists an element 0C ∈ Z�H�+ satisfying (G1)
and (G2) from (4.5), then

(i) 0C is the unique element of Z�H�+ satisfying (G1) and (G2).
If for each conjugacy class C there exists an element 0C ∈ Z�H�+ satisfying

(G1) and (G2), then
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(ii) The set �0C � C ∈ ccl�W �� is a ��ξ�-basis for Z�H�; and

(iii) Z�H�+min = �0C � C ∈ ccl�W ��.

Proof. (i) Suppose there exists a 0′C ∈ Z�H�+ satisfying (G1) and
(G2). Then 0C − 0′C has no shortest elements of any conjugacy class with
non-zero coefficient. This contradicts (4.2) unless 0C = 0′C .

(ii) Linear independence follows by specialization (putting ξ = 0
gives a set of conjugacy class sums, which are a basis for the centre of the
group algebra, and so linearly independent).

For spanning, we can use the fact that H��ξ� is isomorphic to ��ξ�W
(see, for example, [CR, Sect. 68] or [C1, Sect. 10.11]), which gives that the
set is a basis for the centre over ��ξ� (because it is a linearly independent
set of the same rank). Any element of Z�H� may then be written as a ��ξ�-
linear combination of the 0C , since Z�H� ⊆ Z�H��ξ��. Let h ∈ Z�H� and
write h =∑C rC0C , for rC ∈ ��ξ�.

Since h ∈ Z�H�, the coefficients of the shortest elements of a conjugacy
class C in h are from ��ξ�, and yet the only occurrences of the shortest
elements of C in h are from 0C , and these appear with coefficient rC in
h—since the coefficient of the shortest elements of C in 0C is 1. Thus we
have that rC ∈ ��ξ� for all conjugacy classes C, and h is in the ��ξ�-span
of the set of 0C ’s.

(iii) We need to show first that each 0C is in fact minimal, and then
that there are no other minimal elements.

Take any 0C , and suppose there were another non-zero positive central
element h ≤ 0C . Since h is non-zero and central, it must contain shortest
elements of some conjugacy class with non-zero coefficients (by (3.3)). But
h ≤ 0C , so h must contain shortest elements from C, with coefficient less
than the coefficient of the same shortest elements in 0C . By (4.6), we then
must have 0C ≤ h and so 0C = h.

Suppose there was a minimal element h of Z�H�+ which is not equal
to 0C for any C. By (ii), we may write h as a ��ξ�-linear combination of
the 0C ’s, h = ∑C rC0C , for rC ∈ ��ξ�. Since h is positive, the coefficients
of any shortest elements in h are positive. Since shortest elements of a
conjugacy class C occur in only one 0C this means that the coefficients rC
of 0C in the expansion of h must be positive, for each C. That is, h is an
��ξ�-linear combination of the 0C ’s, which then means that any 0C with
non-zero coefficient in the expression of h is less than h, contradicting the
minimality of h, unless h = 0C for some C.

(4.8) Corollary. Suppose there exist elements LC satisfying (L1) and
(L2) from (4.3). Then Z�H�+min is a ��ξ�-basis for Z�H�.
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Proof. By (4.5), the existence of elements LC satisfying (L1) and (L2)
is equivalent to the existence of elements 0C satisfying (G1) and (G2) (see
(4.5)). Then (4.7)(ii) and (iii) give the desired conclusion.

Reverting To a Basis over ��q; q−1�
We now demonstrate how to obtain the analogous basis for the cen-

tre over ��q; q−1�. Of course one can immediately obtain corresponding
central elements over ��q1/2; q−1/2� by substituting ξ = q1/2 − q−1/2 and
T̃w = q−�l�w��/2Tw in 0C for each C. We will show that these are either over
��q; q−1� or are q−1/2-multiples of elements over ��q; q−1�. We begin with
a result on the coefficients of terms in 0C :

(4.9) Lemma. Suppose 0C exists and ξiT̃w ≤ 0C . Then

(i) i is even if and only if l�w� = lC + 2k for some k ≥ 0, and
(ii) i is odd if and only if l�w� = lC + 2k+ 1 for some k ≥ 0.

Furthermore, we always have i ≤ l�w� − lC .

Proof. Consider how additions of terms of different lengths and differ-
ent coefficients may arise due to the algorithm. The only way the power of
ξ is increased is by adding ξrT̃sds to complete the s-class element rbII

ds (for
r ∈ ��ξ�), and this addition is also the only way the length of the element
can be increased by an odd number—1. All other completions (for s-class
elements bII

d , or of form T̃ds in bII
ds) maintain the power of ξ and add terms

of length 2 greater than that already present.
Thus, even (resp. odd) powers of ξ and terms of length an even (resp.

odd) difference from lC arise only by an even (resp. odd) sequence of bII
ds

completions of form ξT̃sds (interspersed perhaps with bII
d completions).

Increases in the power of ξ are linked to an increase by one in the length
of the word. Thus the maximum power of ξ possible in the coefficient of
T̃w would be if we were to increase the power by one for every increase by
one in word length, from the shortest word in C up to the addition of ξiT̃w.
This gives a maximum increase in power of ξ (from a power of zero—a
coefficient of one) of l�w� − lC .

If we write 0C;q for the image of 0C in the injection H → Hq (defined by
setting ξ = q1/2 − q−1/2 and T̃w = q−�l�w��/2Tw), then we have the following
consequence of the lemma:

(4.10) Proposition. Suppose 0C exists for a conjugacy class C. If lC is
even, then 0C; q ∈ H��q; q−1�. If lC is odd, then q−1/20C;q ∈ H��q; q−1�.

Proof. Every term in 0C is of form ξiT̃w which gives

�q1/2 − q−1/2�iq−l�w�/2Tw
in 0C; q.
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If lC is even, then by (4.9) we will have either i even and l�w� even, or
i odd and l�w� odd. In either case we have i + l�w� even, and so �q1/2 −
q−1/2�iq−l�w�/2 = q−1/2qi+l�w��q− 1� ∈ ��q; q−1�.

If lC is odd, again by (4.9) we have either i even and l�w� odd, or i odd
and l�w� even. Then in either case we have i+ l�w� odd, and so q−1/2�q1/2−
q−1/2�iq−l�w�/2 = q−1/2q1+i+l�w��q− 1� ∈ ��q; q−1�.

(4.11) Corollary. If 0C exists for all conjugacy classes C, then the set
�0C;q � C ∈ ccl�W �, and lC even� ∪ �q−1/20C;q � C ∈ ccl�W �, and lC odd� is
a ��q; q−1� basis for Z�H��q; q−1��.

Proof. Each 0C commutes with T̃w for any w ∈ W so 0C;q commutes
with T̃w = q−�l�w��/2Tw, and so commutes with all Tw. These elements are
also linearly independent, as they specialize (on q = 1) to conjugacy class
sums in the group algebra. The spanning can be shown in exactly the same
way as for the ��ξ� case (see proof of (4.7)(ii)).

5. TYPE An

We now show the existence in type An of elements 0C as required by
Theorem 4.7, using results of Jones from [J]. Despite the new work of Geck
and Rouquier [GR] described in the next section, this proof in type An

remains interesting as it is entirely elementary and does not need character
theory.

In this section, we will refer to W = W �An� and H = H�An�, where
W �An� has generators s1; : : : ; sn and relations s2

i = 1 for 1 ≤ i ≤ n,
�sisj�2 = 1 for �i − j� ≥ 2, and �sisi+1�3 = 1 for 1 ≤ i < n. The following
definition is attributed in [J] to Hoefsmit and Scott:

(5.1) Definition. Let W ′ be a parabolic subgroup of W and let $ be the
set of distinguished right coset representatives of W ′ in W . For h ∈ H , we
define the relative norm of h to be

NW;W ′ �h� =
∑
d∈$

T̃d−1hT̃d:

The following lemma is vital for the Jones results (see [J, (2.13)]):

(5.2) Lemma. If h ∈ ZH�H�W ′��, then NW;W ′ �h� ∈ Z�H�.
A parabolic subgroup Wλ of W corresponds to a partition λ of n+ 1 in

the following way. If λ = �λ1; : : : ; λr� ` n+ 1, then we define

Wλ = Wλ1
× : : :×Wλr ;
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where

Wλi = �sλ1+···+λi−1+1;:::;sλ1+···+λi−1�:
[Note that there are many compositions of n + 1 corresponding to the

same partition, each reflecting a permutation of the λi’s. These different
compositions give different (conjugate) parabolic subgroups, but we will
focus on the “standard" representative corresponding to the ordering of
the λi’s which is a partition.]

We denote the Iwahori–Hecke algebra corresponding to the parabolic
subgroup Wλ by Hλ x= H�Wλ�.

For such a component subgroup Wλi we define wλi to be its Coxeter
element wλi = sλ1+···+λi−1+1 · · · sλ1+···+λi−1, and write lλ =

∑r
i=1�λi − 1� for

the length of the Coxeter element of Wλ. There is also a corresponding
conjugacy class Cλ of W for each partition λ of n+ 1, for which the coxeter
element wλ1

· · ·wλr of Wλ is a shortest representative.
Then for any partition λ ` n+ 1, let

ηλ =
r∏
i=1

NWλi−1; 1�T̃wλi �

and

bλ = NW;Wλ�ηλ�:
The main result of [J] is that the set of bλ for λ ` n+ 1 is a ��ξ�-basis for

Z�H�. Our main interest in these elements lies in some of the properties
they have in addition to being a basis. The following properties are proven
in [J] at various points in the paper:

(5.3) Proposition. Let w ∈ W and 0 6= r ∈ ��ξ�. Then

(i) ηλ ∈ Z�Hλ�;
(ii) bλ ∈ Z�H�+;

(iii) If rT̃w ≤ bλ; then l�w� ≥ lλ;
(iv) If rT̃w ≤ bλ and l�w� = lλ; then w ∈ Cλ;min and r ∈ �;

(v) bλ�ξ=0 = aT̃Cλ for some a ∈ �.

Proof. (i) [J, (3.23)].
(ii) The centrality of bλ follows from (5.2) and (i), and the positiv-

ity follows since bλ is a sum of products of sums of products of positive
elements, and so is also positive.

(iii) [J, (3.25)].
(iv) [J, (3.27), (3.28)].
(v) [J, (3.29)].
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(5.4) Theorem. For each conjugacy class C of W = W �An� there exist
elements LC ∈ Z�H�+ satisfying (L1) and (L2) (see (4.3)).

Proof. We proceed by reverse induction on the length lλ of the shortest
element of the conjugacy class Cλ.

The longest shortest element of any conjugacy class is that of the Coxeter
class, which corresponds to the partition λ = �n+ 1�. In this case we have
that b�n+1� satisfies (L1) directly from (5.3)(v). By (5.3)(iii) and (iv), the
only elements of length n are those from C�n+1�;min, and these appear with
integer coefficient in b�n+1�. Then by (5.3)(v), they in fact all have the same
coefficient. All other terms in b�n+1� are strictly longer than n, and not
shortest in any conjugacy class, and so b�n+1� also satisfies (L2), and we
have the existence of the required LC .

Suppose inductively that for lλ > k we have the existence of LCλ with
the required properties. Then we also have that 0Cλ exists for lλ > k, and
thus we have the results of Section 4 for those conjugacy classes.

Take a conjugacy class Cλ with lλ = k. The only terms of length k in the
Jones element bλ are elements of Cλ;min. If there are shortest elements of
other conjugacy classes in bλ they must have length strictly greater than k.
By (4.6), if rT̃w ≤ bλ for w ∈ Cmin for some C, then r0C ≤ bλ, and so we
may subtract r0C from bλ while remaining in Z�H�+. In this way we may
remove all shortest elements other than those of length k from bλ, giving
us a positive central element which specializes to an �-multiple of T̃Cλ
and which contains no other shortest elements with non-zero coefficient. In
other words, we have an element satisfying (L1) and (L2). This proves the
theorem.

(5.5) Corollary. In type An we have the following:

(i) For any i ∈ �, !i�T̃C� and !i�T̃Cmin
� are well defined, and there

exist finite n; n′ ∈ � such that !n�T̃C� = !n′ �T̃Cmin
� = 0C satisfies (G1) and

(G2) from (4.5).
(ii) Z�H�+min = �0C � C ∈ ccl�W ��.

(iii) Z�H�+min is a ��ξ�-basis for Z�H�.
Proof. (i) follows from (4.5) and (5.3). (ii) follows from (i) and (4.7)(iii).

(iii) follows from (5.4) and (4.7).

6. GENERAL WEYL GROUPS

Recent results of Geck and Rouquier [GR] provide the type of element
required for the results in Section 4 in order to prove the algorithm is well
defined for all types of Weyl groups, and that the primitive minimal positive
central elements are a basis for Z�H�.
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Define the irreducible characters φix H��ξ� → ��ξ�. These are ��ξ�-
linear maps with the property that for any a; b ∈ H��ξ�, φi�ab� = φi�ba�.
Starkey and Ram (independently in [C2] and [R], respectively) have shown
in type An that these characters are constant on shortest elements of con-
jugacy classes. Geck and Pfeiffer extended this to all types of finite Weyl
group in [GP] using (1.1).

Since H��ξ� is isomorphic to ��ξ�W , we have that the number of irre-
ducible characters is the same as the number of conjugacy classes. Theo-
rem (1.1) shows that we may write the image of any generator T̃w under any
central function φ as an ��ξ�-linear combination of images of shortest el-
ements from conjugacy classes, using the relations φ�T̃sds� = φ�T̃sdT̃s� =
φ�T̃sT̃sd� = φ�T̃d + ξT̃sd� = φ�T̃d� + ξφ�T̃sd� and φ�T̃ds� = φ�T̃sd� for
d ∈ $�s�; �s�. Thus we may write

φi�T̃w� =
∑
C

fw;Cφi�T̃wC �

for any w ∈ W , all irreducible characters φi, and for some wC ∈ Cmin.
Further, the fw;C are unique since the irreducible characters are linearly
independent (which means the matrix �φi�T̃wCj �� is invertible).

Geck and Rouquier [GR, Sect. 5] then point out that the functions
fC x H → ��ξ� defined on the generators by sending T̃w to fw;C are cen-
tral, and that for any central function ϕ ∈ CF�H� we may write ϕ =∑
C ϕ�T̃wC �fC , which means the set �fC x C ∈ ccl�W �� is a ��ξ�-basis for

CF�H�. They then call upon the correspondence between central functions
and central elements to get elements zC which form a ��ξ�-basis for the
centre of H , zC =

∑
w∈W fC�T̃w�T̃w−1 . [Note that since Geck and Rouquier

work over ��q; q−1�, they need an additional weighting factor q−l�w� which
is not necessary over ��ξ�.] A key part of their proof is the recognition that
for wC ′ ∈ C ′min, fwC′ ;C = δC;C ′ .

Our methods then provide an alternative proof that this set of elements
is a basis for the centre:

(6.1) Lemma. The set �∑w∈W fC�T̃w�T̃w � C ∈ ccl�W �� satisfies properties
(G1) and (G2), and so zC = 0C for all C.

Proof. The centrality follows directly from Lemma (3.1) and the rela-
tions φ�T̃sds� = φ�T̃d� + ξφ�T̃ds� and φ�T̃ds� = φ�T̃sd� for any d ∈ $�s�; �s�
and any central function φ.

The image of a shortest element of a conjugacy class under fC is ei-
ther 1 or 0, so we have that the coefficient of a shortest element T̃wC′ in∑
w∈W fC�T̃w�T̃w is 1 if C ′ = C and 0 otherwise. Thus (G2) is satisfied.
If w ∈ C ′ for any conjugacy class C ′ of W , then fC�T̃w� = fC�T̃wC′ � +

ξX, where X is an ��ξ�-linear combination of images fC�T̃u�. So since
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fC�T̃wC′ � = 0 unless C = C ′, and 1 if it does, we have
∑
w∈W fC�T̃w�T̃w�ξ=0 =

T̃C , so (G1) (see (4.5)) is satisfied.
Finally the equality

∑
w∈W fC�T̃w�T̃w =

∑
w∈W fC�T̃w�T̃w−1 follows since

the latter also satisfies (G1) and (G2), and so by (4.7)(i) they are the same,
and are the element 0C .

The existence of these elements then provides us with the means to draw
our general conclusion for Weyl groups:

Proof of (2.2). Since we have the existence of 0C for all C and all Weyl
groups W (from (6.1)), (i) follows from (4.8), and (ii) follows from (4.7).

Remark. In order to use characters to calculate a primitive minimal
positive central element, as done in other approaches to the question (for
example, [R] and [C2] in type An and [GR] for general Weyl groups), one
must calculate the coefficient φC�T̃w� for every w in W . The algorithm
! has the advantage that one only calculates coefficients for those terms
whose coefficient is non-zero.

7. NON-CRYSTALLOGRAPHIC FINITE COXETER GROUPS

We have shown that the set of primitive minimal positive central elements
of an Iwahori–Hecke algebra over a Weyl group has remarkable properties,
and may be found by an elementary algorithm. This relies on the Weyl
group conjugacy result of Geck and Pfeiffer (Theorem 1.1). To complete
the full description for all finite Coxeter groups, it remains to establish the
results for the dihedral groups I�n�, and the groups of type H3 and H4.

It is straightforward to check this in the dihedral groups (see below), and
can be done for H3 by explicit calculation of the conjugacy classes (there
are 120 elements in W �H3�, and 10 conjugacy classes, all of size less than
or equal to 20)—see [Fr] for details. The group H4 is more difficult to do
this way though, as it has 14,400 elements. Possible approaches to checking
H4 may be through computer programs such as Magma or GAP (which
Geck and Pfeiffer used to prove (1.1) for the exceptional Weyl groups), or
perhaps by using the embedding into E8 (see [S]).

Note. Since the submission of this paper Meinolf Geck has told me that
in fact they have proved (1.1) in the non-crystallographic case also. Their
work can be found in [GHLMP, Sect. 3.2], and uses computer algebra.
Thus in the following section, (7.1) is merely “independent” rather than
“original.”
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The Dihedral Groups

We show first that the Geck–Pfeiffer theorem holds for dihedral groups,
and then provide the set of primitive minimal positive central elements for
the Iwahori–Hecke algebras of the dihedral groups.

The dihedral group of type I�n� has generators �s; t� with relations s2 =
t2 = �st�n = 1. The conjugacy classes split into the case where n is even
and the case where n is odd. Let us write n = 2v or n = 2v+ 1.

(7.1) Proposition. Theorem 1:1 holds for the dihedral groups.

Proof. Consider first n = 2v. The longest word of I�n� is �st�v. There
are v+ 3 conjugacy classes, with representatives 1; s; t; �st�k for 1 ≤ k ≤ v.
If we write Cw for the conjugacy class containing w ∈ I�n�, we have

C1 = �1�;
Cs = ��st�ks; �ts�lt �k ≤ v− 2 even, l ≤ v− 1 odd�;
Ct = ��st�ks; �ts�lt �k ≤ v− 1 odd, l ≤ v− 1 even�;

C�st�k = ��st�k; �ts�k� for k < v;

C�st�v = ��st�v�:
The classes C1 and C�st�v are singleton sets, so the theorem trivially holds.
The classes C�st�k for 1 ≤ k < v have only two elements in each, which
are both “minimal" in length in the class, so the proposition holds. Finally,
every element of Cs and Ct has a shorter conjugate by either s or t, except
the minimal element of the class, so the proposition holds here too.

If n = 2v + 1, the longest word is �st�vs = �ts�vt, and there are v + 2
conjugacy classes with representatives 1; s; �st�k. The classes are

C1 = �1�;
Cs = ��st�ks; �ts�lt � 0 ≤ k ≤ v; 0 ≤ l < v�;

C�st�k = ��st�k; �ts�k� for 1 ≤ k ≤ v�:
Again C1 is trivial, and each C�st�k contains only two elements of the same
length. As with the even case, every element of Cs has an s- or t-conjugate
of strictly shorter length, so the proposition holds.

For σ ∈ S, we denote the subset of elements in Cσ of length greater than
or equal to i by Cσ; i.

Given (7.1), we may use the algorithm ! to find the primitive mini-
mal positive central elements of the Iwahori–Hecke algebras of the dihe-
dral groups. We provide without proof the following set of elements of
Z�H�I�n���+min.
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(7.2) Theorem. The following set of elements is the set of primitive min-
imal positive central elements of the Iwahori–Hecke algebra of the dihedral
group I�n�; and thus forms a ��ξ�-basis for Z�H�I�n���x
n = 2v even; 1 ≤ k ≤ v;

01 = T̃C1
;

0σ = T̃Cσ for σ ∈ S;
0�st�k = T̃C�st�k + ξ

∑
i>2k
σ∈S

T̃Cσ; i y

n = 2v+ 1 odd; 1 ≤ k ≤ vx
01 = T̃C1

;

0s = T̃Cs ;
0�st�k = T̃C�st�k + ξ

∑
i>2k T̃Cs; i :

These elements may be compared with the similar ��ξ�-basis for the
centre found by Fakiolas (in [Fa]) working over the ring ��q�, which we
denote bw for w a representative of the conjugacy class C. We have the
following relations between the elements in [Fa] (modified to be over ��ξ�)
and those above:
For n = 2v even, 1 ≤ k < v,

b1 = 01;

bσ = 0σ;
b�st�k = 0�st�k − ξ�0s + 0t�;
b�st�v = 0�st�v y

for n = 2v+ 1 odd, 1 ≤ k ≤ v,

b1 = 01;

bs = 0s;
b�st�k = 0�st�k − ξ0s:

8. EXAMPLES

8.1. Type A2

The Weyl group of type A2 is generated by the simple reflections s1
and s2 with relations s2

i = �s1s2�3 = 1. It has six elements, �1; s1; s2; s1s2;
s2s1; s1s2s1�, and three conjugacy classes. The conjugacy classes Ci of
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W �A2� and the corresponding primitive minimal positive central elements
are

C1 = �1�; C2 = �s1; s2; s1s2s1�; C3 = �s1s2; s2s1�;
01 = T̃C1

; 02 = T̃C2
; 03 = T̃C3

+ ξT̃s1s2s1 :

8.2. Explicit Calculation in Type B2

The Weyl group of type B2 has eight elements generated by the simple
reflections �s; t� with relations s2 = t2 = �st�4 = 1. It has five conjugacy
classes, but the only primitive minimal positive central element which is
not simply the conjugacy class sum corresponds to the class �st; ts�. We
show diagramatically the construction using the algorithm (note that sts
commutes with t, and tst with s, so that T̃sts (resp. T̃tst) is a t-class element
(resp. s-class element) on its own):

T̃st T̃ts

t s t s

ξT̃tst ξT̃sts

8.3. Type A3

Let W be the Weyl group of type A3, generated by s1, s2, and s3, with
relations s2

j = �s1s3�2 = �sisi+1�3 = 1 for j = 1; 2; 3 and i = 1; 2. The con-
jugacy classes of W are

Cid = �1�;
C12 = �s1s2; s2s1; s2s3; s3s2; s2s3s2s1; s1s2s3s2; s1s2s1s3; s1s3s2s1�;
C1 = �s1; s2; s3; s1s2s1; s2s3s2; s1s2s3s2s1�;
C13 = �s1s3; s2s1s3s2; s1s2s1s3s2s1�;
C123 = �s1s2s3; s2s1s3; s1s3s2; s3s2s1; s1s2s1s3s2; s2s1s3s2s1�:

For simplicity of notation, we will write T̃si = T̃i, and as before we will write
T̃C for the conjugacy class sum. The elements of Z�H�A3��+min are

0C = T̃C for C = Cid; C1; C13;

0C12
= T̃C12

+ ξ�T̃121 + T̃232 + 2T̃12321 + T̃21321 + T̃12132� + ξ2T̃121321;

0C123
= T̃C123

+ ξ�T̃1213 + T̃1321 + T̃1232 + T̃2321 + T̃2132 + 2T̃121321�
+ ξ2�T̃12132 + T̃21321 + T̃12321� + ξ3T̃121321:
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We may compare these elements with the Jones elements (see Section 5),
which we denote bC for the element corresponding to the conjugacy class C:

bCid
= 240Cid

+ 12ξ0C1
+ 6ξ20C13

+ 4ξ20C12
+ ξ30C123

;

bC1
= 20C1

+ 2ξ0C12
+ 2ξ0C13

+ ξ20C123
;

bC13
= 20C13

+ ξ0C123
;

bC12
= 0C12

+ ξ0C123
;

bC123
= 0C123

:

The upper-triangularity of these relationships reflects the fact that the Jones
element corresponding to a conjugacy class C contains shortest elements
only of conjugacy classes of length greater than lC , apart from those in C
(see (5.3)(iii) and (iv)).

8.4. The Explicit Construction of !�T̃C12
� in Type A3

We can graphically show the construction of 0C12
in H�A3�, starting at

the top with the shortest elements in C12, and s-class element completions
denoted by connecting lines. The practical process is to start with the short-
est, and check that for each s there are lines labelled by s connecting the
element with the others in its s-class element. The shortest term for which
there is no connection for some s is the term we complete.

Note that both ξT̃12321 and ξ2T̃121321 are self-conjugate under T̃2, so form
s2-class elements of Type I.

One can see that for any s ∈ S, we may cut up the above graph into
disjoint subgraphs corresponding to the types shown in diagram (3.6) as
well as the singleton subgraphs corresponding to Type I s-class elements,
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although in the above diagram we have suppressed any horizontal lines
from the Type II graphs for simplicity. This shows that the sum of the
terms above is in the centre, and by checking that each step never adds
shorter we have (by (4.5)) that this sum is the element 0C12

∈ Z�H�A3��+min.
Alternatively, to see the sum is 0C12

one could observe that it specializes
to T̃C12

and that there are no shortest elements from any conjugacy class
other than those from T̃C12

. We can then make our conclusion using the
characterization of (4.7)(i).

8.5. Type B3

Let W be the Weyl group of Type B3, generated by t, s1, s2, and with
relations t2 = s2

i = 1, �ts1�4 = �s1s2�3 = �ts2�2 = 1. The conjugacy classes
of W are
C1 = �1�;
C2 = �s2t; s1s2ts1; s1s2s1ts1s2; ts1s2ts1t; ts1s2s1ts1s2t; s1ts1s2ts1ts1�
C3 = �t; s1ts1; s2s1ts1s2�;
C4 = �s1; s2; s1s2s1; ts1t; ts1s2s1t; s1ts1s2s1ts1�;
C5 = �ts1ts1; s2ts1ts1s2; s1s2ts1ts1s2s1�;
C6 = �ts1ts1s2s1ts1s2�;
C7 = �s1s2; s2s1; ts2s1t; ts1s2t; s1s2s1ts1t; ts1ts1s2s1; ts2s1ts2s1; s1s2ts1s2t�;
C8 = �s1t; ts1; ts1s2s1; s1s2s1t; s1ts1s2; s2s1ts1�;
C9 = �s1s2t; s2s1t; ts1s2; ts2s1; s2s1ts2s1; s1s2ts1s2; ts1ts2s1ts1; s1ts1s2ts1t�;
C10 = �s2s1ts1t; s1s2ts1t; ts1ts1s2; ts1ts2s1; s1s2s1ts2ts1; s2ts1ts1s2s1�:
Again we abbreviate T̃si to T̃i, and write T̃C for the conjugacy class sum.

The minimal basis for Z�H�B3�� over ��ξ� is the set �01; : : : ; 010�, where
the 0i are

0i = T̃Ci for i = 1; : : : ; 6;

07 = T̃C7
+ ξ�T̃121 + T̃t121t + T̃1t21t12 + T̃t21t121 + 2T̃1t121t1 + T̃t1t121t

+ T̃t1t21t1� + ξ2�T̃1t121t12 + T̃t1t21t12 + T̃t1t121t1�;
08 = T̃C8

+ ξ�T̃1t1 + T̃t1t + 2T̃21t12 + T̃121t1 + T̃1t121 + T̃t121t + T̃t1t21t1

+ T̃t1t121t + T̃1t121t1� + ξ2�T̃121t12 + T̃t1t21t12 + T̃t1t121t1�;
09 = T̃C9

+ ξ�T̃121t + T̃t121 + T̃12t1 + T̃21t1 + T̃1t12 + T̃t12t + T̃t21t + 2T̃121t12

+ T̃t1t21t + T̃1t121t + T̃t121t1 + T̃t1t121 + T̃121t1t + 2T̃t1t21t12 + 2T̃t1t121t1�
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+ ξ2�T̃1t121 + T̃121t1 + T̃21t12 + T̃t121t + 2T̃t1t121t + 2T̃t1t21t1 + 2T̃1t121t1

+ T̃1t21t12 + T̃t21t121� + ξ3�T̃121t12 + 2T̃t1t21t12 + 2T̃t1t121t1 + T̃1t121t12�;
010 = T̃C10

+ ξ�T̃t21t12 + T̃121t1t + T̃t1t121 + T̃t121t1 + T̃1t121t + T̃t1t21t

+ T̃t1t21t12 + 2T̃1t121t12 + T̃t1t121t1� + ξ2�T̃1t21t12 + T̃t121t12

+ T̃1t121t1 + T̃t1t21t1 + T̃t1t121t� + ξ3�T̃1t121t12 + T̃t1t21t12 + T̃t1t121t1�:
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