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Abstract. To date, integral bases for the centre of the Iwahori-Hecke algebra of a
finite Coxeter group have relied on character theoretical results and the isomorphism
between the Iwahori-Hecke algebra when semisimple and the group algebra of the
finite Coxeter group. In this paper, we generalize the minimal basis approach of [F1]
to provide a way of describing and calculating elements of the minimal basis for the
centre of an Iwahori-Hecke algebra which is entirely combinatorial in nature, and
independent of both the above mentioned theories.

This opens the door to further generalization of the minimal basis approach to
other cases. In particular, we show that generalizing it to centralizers of parabolic
subalgebras requires only certain properties in the Coxeter group. We show here that
these properties hold for groups of type A and B, giving us the minimal basis theory
for centralizers of any parabolic subalgebra in these types of Iwahori-Hecke algebra.

0. Introduction

The minimal basis for the centre of an Iwahori-Hecke algebra was defined and
described in [F1], but a key part of the result required proving the existence of
certain positive elements of the centre. The existence of these elements (the “class
elements”) was proved using the character theoretical results of [GR], and also
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used the isomorphism between the Iwahori-Hecke algebra over Q(q1/2) and the
group algebra Q(q1/2)W (a result which needs some heavy machinery to prove).

In this paper, we give a new proof of the existence of the class elements, and
using this prove the minimal basis results without need of characters, or even the
isomorphism with the group algebra. Apart from the obvious advantage of avoiding
the need for difficult theorems, this approach has at least one other advantage,
that of generalizability. The methods used in this paper make the results of [F1]
potentially generalizable to the centralizers of parabolic subalgebras, whereas the
character theory approach is not. What is needed for a complete generalization of
the minimal basis approach to centralizers is a generalization of the theorem by
Geck and Pfeiffer [GP] on reducibility in conjugacy classes of Weyl groups. We
prove in this paper that if J is a subset of the set of simple reflections in type A
and B then all J-conjugacy classes are reducible, and this is sufficient to obtain the
minimal basis theory for centralizers of the corresponding parabolic subalgebras in
these cases.

After the general preliminaries of Section 1, we set about generalizing the Coxeter
group result of Geck and Pfeiffer [GP] to J-conjugacy classes in types A and B.

The last two sections, 3 and 4, provide the minimal basis theory for centres of
Iwahori-Hecke algebras in an entirely combinatorial way. Section 3 provides a proof
of the existence of class elements using little more than linear algebra. This fact
was previously only obtainable via character theory (see [GR] and [F1]). Section 4
then finishes the proofs of the minimal basis theory, but avoids the use of the group
algebra isomorphism, which was previously used (see [F1]). The only information
about Iwahori-Hecke algebras needed for these two sections is the generators and
relations, and the [GP] result, which makes these results entirely generalizable to
all centralizers of parabolic subalgebras, pending an analogy to [GP]. Thus, these
sections motivate the work on centralizers of parabolic subalgebras in Section 2.

I would like to thank Jie Du, who encouraged me to look at this question while
I was doing my PhD under his supervision, and also Leonard Scott, who more
recently gave his time to some discussions on these results, especially some of those
in section 2. I would also like to thank Bob Howlett, who after reading more narrow
results in my thesis a long time ago suggested the results there should be able to
be generalized. Finally I’d like to thank the reviewer of the initial version of this
paper, who suggested several good improvements.

1. Preliminaries

Let W be a Weyl group with generating set S, and length function l : W → N.
Then for s, s′ ∈ S, W has relations

s2 = 1

(ss′)mss′ = 1
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for some mss′ ∈ N.
Each Coxeter group is partitioned into conjugacy classes C. For J ⊆ S, we

may also partition W into J-conjugacy classes, corresponding to sets of elements
conjugate by elements of WJ . These are sometimes called orbits of WJ under
conjugation. We denote the set of all J-conjugacy classes in W by cclJ(W ), and
abbreviate cclS(W ) to ccl(W ). To distinguish reference to conjugacy classes and
J-conjugacy classes, we will use C to denote an (S-) conjugacy class, and C for a
general J-conjugacy class when J may be a subset of S.

For w ∈ W , we write Cw for the J-conjugacy class containing w. Let lC be the
length of the shortest elements in the J-conjugacy class C, and let Cmin be the set
of shortest elements in C.

For any J-conjugacy class C and s ∈ J we can define an equivalence relation ∼s

on C by writing w ∼s u if sws = u and l(w) = l(u). We then define the equivalence
class ∼J to be generated by the relations ∼s for s ∈ J . The ∼J -equivalence classes
consist of elements of the same length which can be reached from each other by
a sequence of conjugations by simple reflections from J , where each step in the
sequence gives an element in C of the same length.

Each J-conjugacy class C is the disjoint union of such ∼J -equivalence classes, so
we can specify uniquely the ∼J -equivalence class by choosing a representative from
it. We will denote the ∼J -equivalence class containing w by Cw.

For w, w′ ∈ C for some J-conjugacy class C, we say w →J w′ if there exists
a sequence r1, r2, . . . , rm of elements of J and a sequence w0, . . . , wm of elements
of C such that if w0 = w, and wi = riwi−1ri (1 ≤ i ≤ m) then wm = w′, and
l(wi) ≤ l(wi−1) with wi 6= wi−1, for 1 ≤ i ≤ m.

(1.1) Definition. Let C be a J-conjugacy class of W . We say C is reducible if for
all w ∈ C there exists a v ∈ Cmin such that w →J v. Each WJ -WJ double coset in W
is partitioned by J-conjugacy classes, and if every J-conjugacy class in the double
coset WJdWJ is J-reducible, we say that the double coset WJdWJ is reducible.

(1.2) Theorem. Let W be a finite Coxeter group.
(i) Every conjugacy class C of W is reducible,
(ii) If w and w′ ∈ Cmin, then there exists a sequence of xi ∈ W and wi ∈ Cmin

such that w = w0, xiwix
−1
i = wi+1, and wn = w′, with either l(xiwi) = l(xi)+l(wi)

or l(wix
−1
i ) = l(wi) + l(x−1

i ) for each i.

Proof. This was shown for all Weyl groups by Geck and Pfeiffer in [GP], and for
non-crystallographic types in [GHLMP]. The proof for classical types is by a general
argument applied to each type, and the exceptional types is done using the GAP
computer algebra package. ¤

Note: Proofs of the above theorem for the dihedral groups also appears in [F1].
A demonstration for type H3 also appears in [F2].
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This theorem is generalized later in this paper to certain cases of J-conjugacy
classes.

Let the set {ξs | s ∈ S} be indeterminates, and let R = Z[ξs]s∈S . Then the
Iwahori-Hecke algebra H over R is the associative algebra generated by the set
{T̃s | s ∈ S} with relations

T̃ 2
s = T̃1 + ξsT̃s

and
T̃w = T̃si1

. . . T̃sir

when w = si1 . . . sir
is a reduced expression for w. We write H+ for the set of

elements of H whose terms T̃w have coefficient in R+ := N[ξs]s∈S . That is, H+ is
the R+-span of the set {T̃w | w ∈ W}. let F := Q(ξs)s∈S .

[Note that H is a subalgebra of the Iwahori-Hecke algebra Hq over Z[q
1
2
s , q

− 1
2

s ]s∈S

obtained by setting ξs = q
1
2
s − q

− 1
2

s and T̃s = q
− 1

2
s Ts for each generator Ts of Hq.]

There is a natural partial ordering on H+, induced by an ordering on elements
of R+, as follows. Let Monj be the set of all monomials in the ξs for s ∈ S of order
j. If a =

∑
j,mj∈Monj

amj mj and b =
∑

j,mj∈Monj
bmj mj for amj and bmj ∈ N are

elements of R+, then we say a ≤ b if and only if amj ≤ bmj for each j ∈ N and
mj ∈ Monj . Then if h1 =

∑
w∈W awT̃w and h2 =

∑
w∈W bwT̃w with aw, bw ∈ R+

are in H+, we say h1 ≤ h2 if and only if aw ≤ bw for all w ∈ W .
If h ∈ H+, we say h is primitive if the monomial coefficients of terms T̃w in h

have no common factors. For example, h = ξ2
sξtT̃w + ξsT̃u is not primitive, as the

coefficients have a factor of ξs. However, ξsξtT̃w + T̃u is primitive.
Given the partial order on the positive part of H, the non-zero minimal elements

under this partial order are well-defined, and we may similarly define the minimal
elements of the positive part of any subalgebra ofH, for example, Z(H)+ := Z(H)∩
H+. Define the set Z(H)+min to be the primitive minimal elements of Z(H)+. Then
the main theorem of [F1] was that Z(H)+min is an R-basis for the centre of H - and
we called it the minimal basis.

Part of the structure introduced in [F1] to prove this result was a relatively
simple basis for the centralizer of a generator T̃s in H. For d ∈ D〈s〉,〈s〉, the set
of distinguished double coset representatives, define the following four types of
element:

Type I, d ∈ ZW (s) : bI
d = T̃d,

bI
ds = T̃ds,

Type II, d 6∈ ZW (s) : bII
d = T̃d + T̃sds,

bII
ds = T̃ds + T̃sd + ξsT̃sds.

We call these the s-class elements because each specializes to a distinct s-conjugacy
class.

A very useful result of [F1] which is a consequence of (1.2) is the following:



CENTRALIZERS OF IWAHORI-HECKE ALGEBRAS 5

(1.3) Lemma. Suppose w ∈ W is not minimal in its conjugacy class, and h ∈
Z(H). Then the coefficient of T̃w in h is an R+-linear combination of coefficients
of strictly shorter elements in h. In fact, it is an R+-linear combination of the
coefficients of shortest elements of conjugacy classes.

We will use the following notation for the Weyl groups of types A and B:

s1 s2 sn
An : • • . . . •

t s1 s2 sn
Bn+1 : •=========• • . . . •

2. Reducibility in J-conjugacy classes

We will show in this section that for any subset J of the set S of simple reflections
for a Weyl group of type A or B the J-conjugacy classes are reducible.

Each J-conjugacy class C is contained in a unique WJ -WJ double coset, so if
w ∈ C we may write w = w1dw2 with d ∈ DWJ ,WJ , wi ∈ WJ , and l(w) = l(w1) +
l(d) + l(w2). We can always reduce w as far as dw2w

−1
1 without increasing length,

so it will suffice to ask the question “can we reduce an arbitrary du for u ∈ WJ to
a shortest element of its conjugacy class?”.

Since d is distinguished, the only way we can reduce length by conjugating du
by some s ∈ J is if sd = ds′ for some s′ ∈ J , and if s′us is shorter than u. This
motivates us to consider reductions of form u → s′us within WJ , and in general
within a finite Coxeter group.

(2.1) Definition. Given a bijection σ between subsets Jl and Jr of S, extended
homomorphically to a map between WJl

and WJr , define the twisted Jl-conjugacy
class corresponding to σ and containing w ∈ W to be

Cσ,w := {σ(g)wg−1 | g ∈ WJl
}.

The operation previously mentioned sending u to s′us is the motivation for the
above definition. It will transpire that reducibility in J-conjugacy classes reduces
to reducibility in the above twisted conjugacy classes.

For d distinguished in WJdWJ , let Jl := {s ∈ J | sd = ds′, s′ ∈ J}, and let
Jr := {s′ ∈ J | sd = ds′, s ∈ Jl}. Define the map σd : Jl → Jr by setting for
s ∈ Jl σd(s) = s′ when sd = ds′. This σd is clearly a bijection, and extends to a
homomorphism naturally, since for s1, s2 ∈ Jl and sid = ds′i we have (s1s2)d =
s1ds′2 = ds′1s

′
2 so that σd(s1s2) = σd(s1)σd(s2).
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(2.2) Lemma. Let σ be any bijection Jl → Jr for subsets Jl and Jr of J , and let
u ∈ Jl. Then σ preserves length. That is, l(σ(u)) = l(u).

Proof. It suffices to consider u ∈ Jl reduced in length. Since each simple reflection
is mapped by σ to a single reflection, we must have l(σ(u)) ≤ l(u). But since σ
is a bijection, we have an inverse map σ−1 : Jr → Jl, and this also must satisfy
l(σ−1(v) ≤ l(v) for v ∈ Jr. But then we have l(u) ≥ l(σ(u)) ≥ l(σ−1(σ(u))) = l(u),
which proves the lemma. ¤

The reason for an interest in such twistings is that when considering a J-
conjugacy class contained in a double coset WJdWJ , the conjugation by a simple
reflection from WJ can often be thought of such a twisted conjugation on the group
WJ . This relationship is shown in the following lemma. We show that a short-
est element in a J-conjugacy class corresponds to a shortest element in a twisted
Jl-conjugacy class.

In fact, our results are slightly more general than necessary. For the sake of
induction, we actually show in this section that all twisted J-conjugacy classes are
reducible in types A and B. For the purposes of the rest of the paper, we only need
the fact that the standard (un-twisted) J conjugacy classes are reducible.

(2.3) Lemma. Let d ∈ DJ,J , and let σ be a bijection from J to J ′. Let J ′l ⊆ J ′

be the set {s ∈ J ′ | sd = ds′ for some s′ ∈ S}, and let σd be the bijection from J ′l
to J ′r defined by d. Define the subset Jl of J to be Jl = σ−1(J ′l ).

Let dw be an element of the twisted J-conjugacy class Cσ,dw, with d ∈ DJ,J and
w ∈ WJ . Then dw is a shortest element of Cσ,dw if and only if w is a shortest
element of its twisted Jl-conjugacy class Cσdσ,w.

Proof. Suppose dw is shortest in Cσ,dw, but w is not shortest in Cσdσ,w. Then there
is an element u of WJl

with the property that l(σdσ(u)wu−1) < l(w). But then
σ(u)dwu−1 = dσdσ(u)wu−1, since u ∈ Jl, and so

l(σ(u)dwu−1) = l(dσdσ(u)wu−1)

= l(d) + l(σdσ(u)wu−1)

< l(d) + l(w)

= l(dw)

which contradicts that dw is shortest in its twisted J-conjugacy class.
On the other hand, suppose w is shortest in its twisted Jl-conjugacy class, and

let u ∈ WJ be arbitrary. We may write u = u1u2 with l(u) = l(u1) + l(u2) where
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u2 ∈ WJl
and u1 ∈ DWJ/WJl

. Then σ(u)dwu−1 = σ(u1)dσdσ(u2)wu−1
2 u−1

1 , and so

l(σ(u)dwu−1) = l(σ(u1)dσdσ(u2)wu−1
2 u−1

1 )

= l(u1) + l(d) + l(σdσ(u2)wu−1
2 u−1

1 )

≥ l(u1) + l(d) + l(σdσ(u2)wu−1
2 )− l(u−1

1 )

= l(d) + l(σdσ(u2)wu−1
2 )

≥ l(d) + l(w)

= l(dw)

since d is distinguished, and w is minimal in its twisted Jl-conjugacy class. Thus
dw is minimal in its J-conjugacy class. ¤
Remark. The proof above is a straightforward generalization of a proof given of a
non-twisted case for principal parabolic subgroups in types A and B in [F2].

We now expand our attention to twisted conjugacy classes and twisted J- conju-
gacy classes - the general case. After all, conjugacy classes and J-conjugacy classes
are also twisted, but with a trivial twisting homomorphism. This shift to more
generality makes some induction arguments easier.

(2.4) Lemma. Let d ∈ DJ,J , J ′, J ′l , J ′r, Jl, σ : J → J ′, and σd : J ′l → J ′r be as in
Lemma (2.3).

Then dw is reducible in its twisted J-conjugacy class Cσ,dw iff w is reducible in
its twisted Jl-conjugacy class Cσdσ,w.

Proof. If w is reducible in its twisted Jl-conjugacy class Cσdσ,w then there is a
sequence of twisted conjugations by elements of Jl, w → σdσ(s)ws, which reduces
w to a shortest element in Cσdσ,w without increasing length.

It suffices to show that for arbitrary w ∈ WJ that if l(σdσ(s)ws) ≤ l(w), then
l(σ(s)dws) ≤ l(dw). But l(σ(s)dws) = l(dσdσ(s)ws) = l(d) + l(σdσ(s)ws) since d
is distinguished, and this in turn is less than or equal to l(d) + l(w) = l(dw). Con-
sequently, every twisted conjugation by a simple reflection not increasing length in
Cσdσ,w provides a corresponding twisted conjugation by the same simple reflection,
also not increasing length, in Cσ,dw.

The proof is completed by noting that since the sequence of twisted conjugations
of w ends with a shortest element of Cσdσ,w, the corresponding sequence in Cσ,dw

also ends in a shortest element by the above lemma. ¤
(2.5) Theorem. Let W be a finite Coxeter group of type A or B, or a parabolic
subgroup of a finite Coxeter group of type A or B, let S be the set of simple reflec-
tions generating W , and let J ⊆ S. Then every twisted J-conjugacy class in W is
reducible.

Proof. We start with the type Bn case, and proceed by induction on n
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The statement is trivially true for Bn where n = 1, and it is easy to check for
n = 2. So suppose it is true for all groups of type Bk for k < n, and all parabolic
subgroups of groups of type Bk. We need to show that every twisted J-conjugacy
class is reducible in W either Bn or a parabolic subgroup of Bn.

Suppose initially that J  S, and let Cσ,u1du2 be a twisted J-conjugacy class in
W . Then Cσ,u1du2 ⊂ WJ ′dWJ for some distinguished double coset representative d,
and where σ(J) = J ′.

For any u1du2 ∈ Cσ,u1du2 , we can reduce it to something of form du as follows.
Write u1 = si1 . . . sir

for sij
∈ J . Twisted conjugation by σ−1(si1) reduces the

length of u1 by one, and therefore either maintains the length of u1du2 or reduces
it by two. This can be repeated for si2 up to sir

, leaving us with an element of
form du.

By (2.3), reducing an element of form du in Cσ,u1du2 is equivalent to reducing
u in its twisted Jl-conjugacy class Cσdσ,u in WJ , where Jl and σd are as defined in
(2.4). But since J  S, our induction hypothesis applies to the group WJ , and so
the twisted Jl-conjugacy class is reducible in WJ .

It remains to check the case J = S. We need to show that all twisted conjugacy
classes in W = W (Bn) or a parabolic subgroup of W are reducible. Let us first
consider the case of a parabolic subgroup WL of W (and we may assume L  S).
This in fact reduces to cases already assumed by induction, as a conjugacy class
of WL is actually an L-conjugacy class of W , sitting inside the trivial double coset
WL1WL. So its reducibility is done since L  S.

Now consider the twisted conjugacy classes in W = W (Bn). Here we are con-
sidering in fact twisted conjugacy classes Cσ, where σ is a bijective homomorphism
from W to W - in other words, a group automorphism of W , or a graph automor-
phism of the Dynkin diagram of W . But in the case of type Bn, the only graph
automorphism is the trivial one, and so the only twisted conjugacy classes are in
fact the standard ones. In this case, with all the “twists” actually the identity,
our twisted conjugacy classes are just the ordinary conjugacy classes, and these we
know to be reducible by (1.2).

We are left to consider the type A case. But every type A Weyl group is a
parabolic subgroup of a Weyl group of type B, and we have proved that all these
and their parabolic subgroups have all twisted J-conjugacy classes reducible. Thus,
the proof of the theorem is complete. ¤

The following is a generalization of (1.2)(ii).

(2.6) Theorem. Let W be of type A or B, let J ⊆ S, and let σ be a bijection from
J to J ′ which extends to an isomorphism of WJ and WJ ′ . If w and w′ are in Cσ,min

for some twisted J-conjugacy class Cσ, then there exists a sequence of xi ∈ WJ and
wi ∈ Cσ,min such that w = w0, σ(xi)wix

−1
i = wi+1, and wr+1 = w′, with either

l(σ(xi)wi) = l(xi) + l(wi) or l(wix
−1
i ) = l(wi) + l(x−1

i ) for each i, 0 ≤ i ≤ r.

Proof. We proceed in a similar way to the previous theorem. It is easy to check for
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W1 = W (A1), or W (B2), so we may suppose inductively that it holds for all Wk

for k < n. We need to show then that the theorem holds for Wn.
Let us first let Cσ be a twisted J-conjugacy class, where J ⊂ S, and let w = udu′

be the reduced expression of any shortest element of Cσ, where d is distinguished
in WJ ′wWJ . Then du′σ−1(u−1) ∈ Cmin also, and l(du′σ−1(u−1)) = l(du′) + l(u).
In other words, for any element w = udu′ of Cmin we have that there exists a
w′ = dv ∈ Cmin for which the claim is satisfied. This reduces the problem to
showing that any pair dv and dv′ in Cmin have the required property.

Now by (2.3), we have dv ∈ Cσ,min if and only if v is minimal in its twisted
Jl-conjugacy class. Since Jl  S, we have the result by induction for v and v′ in
WJl

and the sequence of conjugations by xi all in WJl
. It follows that the result

holds for dv and dv′.
If J = S, then this is a special case of (1.2)(ii), and the proof is complete. ¤

We have now shown a complete analogy of (1.2) in the case W is of types A
or B. It seems quite likely that the result is true in general, that is, for all finite
Coxeter groups. We hope to return to this question in later work.

3. The existence of class elements

The remainder of this paper is devoted to Iwahori-Hecke algebras. Firstly in
this section we will give a combinatorial account of the existence of the “J class
elements” - a result which is known in the case J = S using the character theoretical
results of [GR].

In section 4 we will then use the existence of the J-class elements to prove
the validity of the algorithm from [F1], and thus the minimal basis theory for all
centralizers of parabolic subalgebras in types A and B, including as a special case
the centre results from that paper. Previously in [F1] we used the isomorphism of
HF with FW to obtain the dimension of the centre, but here we present the theory
without this assumption.

We are going to prove results for J-conjugacy classes which satisfy certain prop-
erties - properties which are known to be true in the case J = S (i.e conjugacy
classes) and in the case W is of type A or B from the earlier parts of this paper.
For convenience we will call them properties I and II, as they will appear verbatim
in several different lemmas and theorems:

(3.0.1) Property I. All J-conjugacy classes are reducible.

(3.0.2) Property II. For any J-conjugacy class C and w, w′ ∈ Cmin there exists
a sequence of xi ∈ WJ and wi ∈ Cmin such that w = w0, wn = w′, xiwix

−1
i = wi+1

and either l(xiwi) = l(xi)+ l(wi) or l(wix
−1
i ) = l(wi)+ l(x−1

i ) for all 1 ≤ i ≤ n−1.

In the Lemma below, (i) is an analogy of (1.3) (and is a direct consequence of
Property I) and (ii) is a corollary of [F1;3.2].



10 ANDREW FRANCIS

(3.1) Lemma. Suppose J satisfies Property I. Then
(i) the coefficient of T̃w in an element h of ZH(HJ) may be written as a R+-linear

combination of coefficients of shortest elements of J-conjugacy classes in h.
(ii) Let h ∈ ZH(HJ)+, let w ∈ C, and let a ∈ N. Then aT̃w ≤ h implies aT̃C ≤ h.

The following is proved for centres in [J: (2.4)], using properties of Frobenius
algebras, (and is almost certainly much older than that). A similar result is given
in [DD], showing certain norms are in the centralizer of the Iwahori-Hecke algebra
in an H-H bimodule. Here we give a combinatorial proof of the variation we need
using the minimal basis for the centralizer of T̃s in H.

(3.2) Lemma. Let w ∈ Cmin for C ∈ cclJ(W ), with J any subset of S. Then the
element

NWJ ,1(T̃w) =
∑

u∈WJ

T̃uT̃wT̃u−1

is in the centralizer ZH(HJ).

Proof. To show N = NWJ ,1(T̃w) is in the centralizer for w ∈ Cmin for some J-
conjugacy class C, we need to show N is in every centralizer ZH(T̃s) for s ∈ J .

Consider the left cosets 〈s〉d of 〈s〉 in WJ , with s ∈ J . Each left coset has exactly
two elements, d and sd, where d is distinguished, and WJ is partitioned by these
left cosets. Let Ds be the set of distinguished left coset representatives of 〈s〉 in
WJ . Then we may write

N =
∑

u∈WJ

T̃uT̃wT̃u−1

=
∑

d∈Ds

(T̃dT̃wT̃d−1 + T̃sdT̃wT̃d−1s)

=
∑

d∈Ds

(
T̃dT̃wT̃d−1 + T̃s(T̃dT̃wT̃d−1)T̃s

)
.

Each product T̃dT̃wT̃d−1 is an R-linear combination of terms T̃x for x ∈ W , and so
N is an R-linear combination of terms of form T̃x + T̃sT̃xT̃s, for x ∈ W . It now
suffices to check that for every x ∈ W , the sum T̃x + T̃sT̃xT̃s is in ZH(T̃s). This is
an elementary task, and can be checked by going through the possibilities for x is
the double coset 〈s〉x〈s〉, as follows.

Either sx = xs or sx 6= xs. In the former case x ∈ {d′, d′s} for d′ distinguished
in 〈s〉x〈s〉, and in the latter x ∈ {d′, d′s, sd′, sd′s}.

If sx = xs and x = d′ ∈ D〈s〉,〈s〉, then

T̃d′ + T̃sT̃d′ T̃s = T̃d′ + (T̃d′ + ξsT̃d′s) = 2bI
d′ + ξsb

I
d′s ∈ ZH(T̃s).
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If sx = xs and x = d′s for d′ ∈ D〈s〉,〈s〉, then

T̃d′s + T̃sT̃d′sT̃s = T̃d′s + T̃s(T̃d′ + ξsT̃d′s)

= 2T̃d′s + ξsT̃d′ + ξ2
s T̃d′s = (2 + ξ2

s )bI
d′ + ξsb

I
d′s ∈ ZH(T̃s).

If sx 6= xs and x = d′ ∈ D〈s〉,〈s〉, then

T̃d′ + T̃sT̃d′ T̃s = T̃d′ + T̃sd′s = bII
d′ ∈ ZH(T̃s).

If sx 6= xs, and x = sd′ for d′ ∈ D〈s〉,〈s〉, then

T̃sd′ + T̃sT̃sd′ T̃s = T̃sd′ + T̃d′s + ξsT̃sd′s = bII
d′s ∈ ZH(T̃s).

If sx 6= xs, and x = d′s for d′ ∈ D〈s〉,〈s〉, then

T̃d′s + T̃sT̃d′sT̃s = T̃d′s + T̃sd′ + ξsT̃sd′s = bII
d′s ∈ ZH(T̃s).

If sx 6= xs, and x = sd′s for d′ ∈ D〈s〉,〈s〉, then

T̃sd′s + T̃sT̃sd′sT̃s = T̃sd′s + T̃s(T̃sd′ + ξsT̃sd′s)

= T̃sd′s + T̃d′ + ξsT̃sd′ + ξsT̃d′s + ξ2
s T̃sd′s

= (T̃d′ + T̃sd′s) + ξs(T̃sd′ + T̃d′s + ξsT̃sd′s)

= bII
d′ + ξsb

II
d′s ∈ ZH(T̃s).

¤
(3.3) Lemma. The set {NWJ ,1(T̃wC

) | C ∈ cclJ(W ), wC ∈ Cmin} is linearly inde-
pendent over F , and is contained in ZH(HJ).

Proof. The centrality follows from (3.2).
The only summands in the full expansion of NWJ ,1(T̃wC

) with coefficient without
a factor of ξs for some s ∈ S are those from C. Thus on specializing to ξs = 0 for
each s, we have a sum of elements in the J-conjugacy class. The set of all sums
of elements in J-conjugacy classes is linearly independent (it forms a basis for the
centralizer of FWJ in the group algebra FW ), and so we have that the norms are
also linearly independent. ¤

We want to find elements of ZH(HJ) which are analogous to J-conjugacy class
sums in the group algebra. The following elements will turn out to fill that role.

(3.4) Definition. If ΓC ∈ ZH(HJ)+, then ΓC is called a J-class element if it
satisfies the following two properties:

(3.4.1) ΓC|ξs=0,s∈S = T̃C, and
(3.4.2) ΓC − T̃C contains no terms of shortest length in any J-conjugacy class.

The purpose of this section is to prove such elements exist.

For some fixed h =
∑

w∈WJ
rwT̃w ∈ ZH(HJ), define the function h : H → R by

setting h(T̃w) = rw and extending linearly to the whole of H.
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(3.5) Lemma. For all w ∈ W and v ∈ WJ , h(T̃wT̃v) = h(T̃vT̃w).

Proof. We first prove for all w ∈ W when l(v) = 1, setting v = s ∈ J . It suffices
to consider w ∈ 〈s〉d〈s〉 for some d ∈ D〈s〉,〈s〉. Suppose firstly that ds = sd. Then
w = d or ds, and in fact we have T̃dT̃s = T̃sT̃d and T̃dsT̃s = T̃sT̃ds, so the lemma
follows trivially. So we may suppose ds 6= sd, and thus w = d, ds, sd, or sds. Then
using [F1;3.1], we have

h(T̃dT̃s) = h(T̃ds) = rds = rsd = h(T̃sT̃d)

h(T̃dsT̃s) = h(T̃d + ξsT̃ds) = h(T̃d) + ξsh(T̃ds) = rd + ξsrds = rsds = h(T̃sT̃ds)

h(T̃sdsT̃s) = h(T̃sd + ξsT̃sds) = rsd + ξsrsds = rds + ξsrsds = h(T̃sT̃sds).

The case w = sd is exactly symmetric to the w = ds case above.
Now suppose the lemma holds for all w ∈ W when l(v) ≤ k, and suppose x ∈ WJ

has length l(x) = k + 1. Then x = vs for some v of length k and some s ∈ J , that
is, l(x) = l(v) + l(s), and T̃x = T̃vT̃s. Let w ∈ W . Then h(T̃wT̃x) = h(T̃wT̃vT̃s) =
h(T̃sT̃wT̃v) = h(T̃vT̃sT̃w) = h(T̃xT̃w), with the second and third equalities following
since T̃wT̃v (resp. T̃sT̃w) are linear combinations of elements T̃u ∈ H, and h is
linear. So by induction we may pass T̃s and T̃v respectively through terms in the
products T̃wT̃v and T̃sT̃w respectively. This proves the lemma. ¤

It is well known that the terms corresponding to shortest elements of a conjugacy
class in a central element have the same coefficient. This has been proved by Ram
[R] and Starkey [C2] in type A, and by Geck and Pfeiffer [GP] for general Weyl
groups. These results used the standard trace map τ defined by setting τ(T̃x) = 1
if x = 1 and 0 if x 6= 1, and it is possible to obtain the following result for the case
J = S using τ .

(3.6) Lemma. Let (W,S) be a finite Coxeter system, and let J ⊆ S be such that
all J-conjugacy classes satisfy Property II (3.0.2). Let w,w′ ∈ Cmin for some J-
conjugacy class C. Then if h =

∑
w∈W rwT̃w ∈ ZH(HJ) we have rw = rw′ .

Proof. By Property 2 of J-conjugacy classes, we have the existence of a sequence
of xi ∈ WJ and wi ∈ Cmin such that w = w0, wn = w′, xiwix

−1
i = wi+1 and

either l(xiwi) = l(xi) + l(wi) or l(wix
−1
i ) = l(wi) + l(x−1

i ) for all 1 ≤ i ≤ n − 1.
We may suppose without loss of generality that n = 1 and that there exists an
x ∈ WJ such that xwx−1 = w′ and l(xw) = l(x) + l(w). Note that this also implies
l(w′x) = l(w′) + l(x) since xw = w′x and l(w) = l(w′).

It follows that T̃xT̃wT̃−1
x = T̃w′ , since T̃xT̃w = T̃xw = T̃w′x = T̃w′ T̃x. Thus

h(T̃w) = h(T̃xT̃wT̃−1
x ) = h(T̃w′)

with the first equality by (3.5), and the lemma follows. ¤
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By (3.3), there exists a set of linearly independent elements of size |cclJ(W )| in
the centralizer of HJ in H. By (3.6), if J satisfies Property II then the coefficients of
the shortest elements of a J-conjugacy class are the same in any centralizer element,
so we have as a corollary:

(3.7) Corollary. Suppose J satisfies Property II. Then for any hi ∈ ZHF
(HJ) we

may write

hi =
r∑

j=1

ai,j T̃Cj,min + Xi

where Xi ∈ HF contains no shortest elements of any J-conjugacy class with non-
zero coefficient, and ai,j ∈ F .

(3.8) Lemma. Suppose J satisfies Property II. Let {hi =
∑r

j=1 ai,j T̃Cj,min + Xi ∈
ZHF

(HJ ) | Cj ∈ cclJ (W )} be a set of linearly independent centralizer elements in
HF , where the Xi’s do not contain any shortest elements of any J-conjugacy class.
Then the set {hi : 1 ≤ i ≤ r} is linearly independent if and only if the set of vectors
{ai = (ai,1, . . . , ai,r) | 1 ≤ i ≤ r} is linearly independent.

Proof. Suppose that the ai are not linearly independent, and there is some relation∑
i riai = 0 for some ri ∈ F . Then

∑
i riai,j = 0 for all j, and we have

∑

i

rihi =
∑

i

riai.(T̃C1,min , . . . , T̃Cr,min) +
∑

i

riXi

=
∑

i

riXi.

The left hand side of the equation is in the centre, so the right hand side is also. This
is a contradiction by (1.3), since

∑
i riXi has no shortest elements with non-zero

coefficient.
If on the other hand the hi are linearly dependent, we have

∑
i rihi = 0 for some

ri ∈ F , so ∑

i

riai.(T̃C1,min , . . . , T̃Cr,min) +
∑

i

riXi = 0,

and again since Xi contains no shortest elements we may equate coefficients of
shortest elements in T̃Cj,min to give

∑
i riai,j = 0 for each j, so

∑
i riai = 0 and the

ai are linearly dependent. ¤
(3.9) Lemma. Suppose J satisfies Property II. Then there exists an element in
the centralizer ZHF

(HJ ) which contains shortest elements from C with coefficient
1, and no other shortest elements from any J-conjugacy class.

Proof. As pointed out above (3.3) there exist r linearly independent elements {hi |
1 ≤ i ≤ r} in ZHF

(HJ), and we can decompose them as in (3.7). We can then write
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the vector equation




h1
...

hr


 =




a1,1 . . . a1,r

...
...

ar,1 . . . ar,r







T̃C1,min

...
T̃Cr,min


 +




X1
...

Xr




where the ai,j are in F , and the Xi contain no shortest elements of any J-conjugacy
class.

By Lemma (3.8), the rows of the matrix A = (ai,j) are linearly independent, so
A is invertible, and we have

A−1




h1
...

hr


 =




T̃C1,min

...
T̃Cr,min


 + A−1




X1
...

Xr


 .

Each entry of the vector on the left hand side is in the centralizer, and so on the
right hand side we also have a vector whose entries are centralizer elements. But
each of these on the right hand side is T̃Ci,min plus a linear combination of elements
Xj ofHF , none of whom contain any shortest elements of any J-conjugacy class. ¤

(3.10) Theorem. Suppose J satisfies Properties I and II. Then there exists a J-
class element ΓC ∈ ZH(HJ )+. Furthermore, ΓC is the unique element of ZH(HJ)+

satisfying (3.4.1) and (3.4.2).

Proof. Recall from (3.1)(i) that if J satisfies Property I then the coefficient of any
element T̃w in a centralizer element h may be written as an R+-linear combination
of the coefficients of shortest elements from J-conjugacy classes in h. From (3.9),
we have the existence of an element hC = T̃Cmin + Y ∈ ZHF (HJ ) where Y contains
no shortest elements of any J-conjugacy class. Since the only shortest elements of
any J-conjugacy class in hC have coefficient 1, (3.1) implies every T̃w occurring in
hC has coefficient in R+, so hC ∈ ZH(HJ)+.

Suppose aT̃w ≤ hC with a a non-zero integer. That is, it has non-zero special-
ization. Then by (3.1)(ii), we have aT̃C′ ≤ hC where C′ is the J-conjugacy class
containing w. So the shortest elements of C′ appear in hC, which means C = C′ since
hC contains shortest elements of only one J-conjugacy class, C. Further, the only
shortest elements in hC have coefficient one, so a = 1. Thus aT̃w = T̃w ≤ T̃C, and so
the only terms with non-zero specialization in hC are from T̃C, giving hC = T̃C +X,
with X specializing to zero.

For uniqueness, suppose there exists a Γ′C ∈ ZH(HJ)+ satisfying (3.4.1) and
(3.4.2). Then ΓC − Γ′C has no shortest elements of any J-conjugacy class with
non-zero coefficient. This contradicts (1.3) unless ΓC = Γ′C. ¤
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4. The minimal basis

With the existence of J-class elements for J satisfying properties I and II, we now
have a way using the results of [F1] to prove the minimal basis theorem without
using characters for ZH(HJ) for any J satisfying properties I and II, via a mild
generalization of the algorithm A defined in [F1]. In this section, we remove the
need for the isomorphism between HF and FW .

Firstly, we will recall the definition of A modifying it only to the extent of
including the possibility of J ⊂ S.

Suppose h = hs + h′s ∈ H+, with hs a maximal element of ZH(T̃s) less than h.
Let ms be the length of the shortest term in h′s (for non-zero h′s).

(4.1) Definition. Let h ∈ H+. Define the algorithm AJ to conduct the following
procedures, for J ⊆ S.

(i) split h into h = hs + h′s for each s ∈ J such that hs is maximal in ZH(T̃s)
less than or equal to h;

(ii) if h′s=0 for all s ∈ J , stop;
(ii)′ otherwise evaluate ms for each s such that h′s 6= 0, and choose s ∈ J such

that ms is minimal;
(iii) add terms to h which complete the s-class elements of those terms in h′s of

length ms;
(iv) declare the new element to be AJ(h), and repeat from (i) with new element.

The main result of [F1] relating to this algorithm is that if we start with the
sum of shortest elements in a conjugacy class T̃Cmin (i.e. J = S), then at each step
the elements of length ms in h′s are all shortest in their s-conjugacy class, so that
the s-class element containing them is uniquely determined, and all additions are
of length ms or longer. This is shown to imply that there is a finite integer n ∈ N
such that An

S(T̃Cmin) = ΓC . Exactly the same argument as appears in [F1] will
work to prove the result for J ⊂ S, as the only facts needed for the proof are: the
existence of elements of form T̃C + ξX ∈ Z(H)+, with X containing no shortest
elements from any conjugacy class; and the reducibility of conjugacy classes. Given
analogous properties for J ⊂ S, we then have:

(4.2) Theorem. Suppose J ⊆ S is such that J satisfies properties I and II. Then
the algorithm AJ adds only same-length or longer when started on T̃C, and there
exists an n ∈ N such that An

J(T̃Cmin) = ΓC.

Use of the algorithm has several important consequences, one of which is the
following:

(4.3) Lemma. If w ∈ Cmin and rT̃w ≤ h ∈ ZH(HJ)+, then rΓC ≤ h.

Proof. By (3.6) we have rT̃Cmin ≤ h. The algorithm AJ adds only same-length
or longer when started on T̃Cmin , by (4.2), and by [F1;3.2] all such additions are
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implications inside a centralizer element. So, the same series of additions we would
make if building rΓC from rT̃Cmin becomes a series of implications, giving us rΓC ≤
h. ¤

(4.4) Proposition. If (W,S) is a finite Coxeter system, and J ⊆ S satisfies
properties I and II, then the set of J-class elements is the set of primitive minimal
positive elements of ZH(HJ). That is,

ZH(HJ )+min = {ΓC | C ∈ cclJ(W )}.

Proof. We will simply show that for any h ∈ ZH(HJ)+ which is non-zero, there
exists a J-class element ΓC such that rΓC ≤ h for some r ∈ R+.

Since h is non-zero, by (1.3) there is a shortest element w of some J-conjugacy
class C such that T̃w has non-zero coefficient r ∈ R+ in h. Then by (4.3) we must
have rΓC ≤ h. This completes the proof. ¤

(4.5) Theorem. Suppose J ⊆ S satisfies properties I and II. Then ZH(HJ)+min is
an R-basis for ZH(HJ ).

Proof. The linear independence of the elements in ZH(HJ)+min can be seen by spe-
cializing to ξs = 0 for all s ∈ S. The result is a set of J-conjugacy class sums, a
linearly independent set in the group algebra R0W .

It remains to show spanning. We begin by showing that ZH(HJ)+ is spanned
by the set ZH(HJ)+min over R+.

Let h ∈ ZH(HJ)+. If h ∈ ZH(HJ)+min, then we are done, so suppose otherwise.
Then h is either not minimal, or is minimal with a factor of mi for some mono-
mial mi. If the latter, then we are done, as h is an R+-multiple of an element of
ZH(HJ )+min. If the former, then there exists a minimal element a1 ∈ (ZH(HJ)+,≤)
such that 0 6= a1 < h. Let k ∈ N be maximal such that mk is a factor of a1. Then
we can write a1 = mka′1, with a′1 ∈ ZH(HJ)+min.

Then h = h1 + mka′1, where h1 ∈ ZH(HJ)+, and h1 < h.
We can now repeat the process for h1, removing an R+ multiple of an element

of ZH(HJ)+min and staying in ZH(HJ)+. Thus we may continually reduce h by non-
trivial multiples of elements of ZH(HJ)+min. This sequence of reductions will finish
in a finite number of steps, as h ∈ ∑

w∈W

[ ⊕
j∈N,mj∈Monj

Nmj

]
T̃w, giving us h as

an R+-linear combination of elements of ZH(HJ)+min.
Now suppose h ∈ ZH(HJ) (not necessarily positive). Then h = h+ + h−, where

h+ ∈ H+, and −h− ∈ H+. Choose w ∈ W such that l(w) is minimal for the
terms in h−. Then w ∈ C for some J-conjugacy class C of W . If T̃w has coefficient
−r in h− for some r ∈ R+, then so does T̃Cw,min , by (3.6), because they have the
same coefficient in h. If we then add rΓC to h, then −rT̃w is no longer a term of
h + rΓC. We may proceed in this way to remove all negative terms in h, by adding
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an R+-linear combination of the ΓC, giving us

h +
∑

C

rCΓC ∈ ZH(HJ )+

for some coefficients rC in R+.
Then by our above work, we may write h+

∑
C rCΓC as an R+-linear combination

of the ΓC also, so that h +
∑

C rCΓC =
∑

C r′CΓC, giving us

h =
∑

C

(r′C − rC)ΓC,

so that h is in the R-span of the J-class elements. ¤
Finally, we are able to draw as a corollary the minimal basis theory for the

centralizers of parabolic subalgebras in types A and B, combining the results of
Section 2 with those of 3 and 4.

(4.6) Theorem. The set ZH(HJ)+min is an R-basis for ZH(HJ ) if (a) H is of any
type of finite Coxeter group, and J = S, or (b) H is of type A or B and J ⊂ S.

Further, in both the above cases the elements ΓC of ZH(HJ )+min are characterized
by the properties

(i) ΓC|ξs=0,s∈S = T̃C, and
(ii) ΓC − T̃C has no shortest elements of any J-conjugacy class.

Proof. This is simply a combination of theorem (1.2) (the Geck-Pfeiffer result) and
theorems (2.5) and (2.6) (proving the analogy for J-conjugacy classes in types A
and B), and (3.10) and (4.5). ¤
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