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Abstract

Genotypic data from pathogenic isolates are often used to measure the extent of infectious disease transmission. These methods include
phylogenetic reconstruction and the evaluation of clustering indices. The first aim of this paper is to critique current methods used to
analyse genotypic data from molecular epidemiological studies of tuberculosis. In particular, by not accounting for the mutation rate of
markers, errors arise in making inferences about outbreaks based on genotypic information. The second aim is to suggest a new way to
represent genotypic data visually, involving graphs and trees. We also discuss some interpretations and modifications of existing indices.
Although our focus is tuberculosis, the methods we discuss are generally applicable to any directly transmissible clonal pathogen.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Molecular tools have enhanced efforts by epidemiolo-
gists to characterise the spread of infectious diseases such
as tuberculosis. The genotyping of isolates has allowed the
investigation of several important questions. For example,
epidemiological links inferred from contact tracing can be
supported, potential risk factors can be studied, and conclu-
sions about the population-level state of epidemics can be
drawn(Foxman and Riley, 2001; Seidler et al., 2004).

As molecular epidemiological data accumulate, we are
presented with the following challenge: how do we quantify
the severity of an epidemic using the genotypic data? In the
case of tuberculosis (TB), this question is closely related to
that of estimating the proportion of TB cases due to recent
transmission rather than to the reactivation of latent infec-
tions. Current methodologies for analysing genotypic data
from pathogenic isolates involve first grouping isolates into
clusters of identical genotypes, then computing a phylogeny
or an index of clustering based on the sizes of these clusters
(to be discussed later). One of the applications of these ap-
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proaches is to identify risk factors linked to “clusteredness”
and therefore elevated disease transmission.

As genotyping technologies develop, the resolution of the
genetic information that can be extracted from pathogenic
isolates increases. For example if the number of genetic sites
considered increases, existing clusters will become parti-
tioned into smaller clusters, and the overall mutation rate
for these sites will increase. This change may have dra-
matic effects on clustering indices. A number of studies
have suggested the use of additional markers to increase the
resolution of currently available technologies. For example,
because low IS6110 copy-number strains ofM. tuberculo-
sis yield little information, these studies have discussed the
use of other markers such as spoligotyping to refine the data
(Bauer et al., 1999; Soini et al., 2001; Rhee et al., 2000).

A further issue is that of mutation events occurring within
the time frame of an epidemiological investigation. A high
mutation rate will tend to reduce the sizes of the clusters
in a sample of genotypes from an outbreak. Combining the
information from several markers raises the overall mutation
rate across those markers. In fact, it is known that even alone
IS6110 evolves at a rate high enough to produce mutation
events on short time scales(Yeh et al., 1998; Niemann et al.,
1999; Tanaka and Rosenberg, 2001; Rosenberg et al., 2003;
van der Spuy et al., 2003).
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This article investigates methods for interpreting geno-
typic data from clonal pathogens such as tuberculosis. We
are concerned with extracting information from molecular
data, rather than estimating disease incidence from data ob-
tained through, for example, tuberculin skin test (TST) sur-
veys. InSection 2we describe some existing approaches to
analysing the population structure ofM. tuberculosis based
on pathogen genotype data sets. We also offer some caution-
ary comments about these techniques inSection 2.3based
on considerations of the mutation process.Section 3intro-
duces a way to visualise molecular epidemiological data,
which also provides a framework for interpreting some of
the current clustering indices. The scope of the methods dis-
cussed here is limited to clonal (asexual) pathogens that are
transmitted directly between hosts. Organisms that undergo
genetic exchange can be included if recombination can be
detected as discrete events and the recombination rate is
known. That is, for the methods discussed here to be appli-
cable, it must be possible to treat recombination itself as a
form of mutation.

2. Methods of quantifying outbreaks of clonal
pathogens using genotypic data

2.1. Recent transmission indices from molecular
epidemiological studies of tuberculosis

We will discuss two related indices of outbreak severity
used in the molecular epidemiology of tuberculosis. We will
refer to both of these as recent transmission indices because
they are intended to reflect the extent of recent transmission
of tuberculosis. The first index is RTIn−1 = (nc − c)/n

(Small et al., 1994), wheren is the total number of cases
in the sample,c is the number of genotypes represented by
at least two cases, andnc is the total number of cases in
cluster of size two or greater. Here, the numerator counts
the number of transmissions reflected by the data set (c is
the number of “source” cases: one per cluster). Similarly,
a second index RTIn = nc/n has been used(Alland et al.,
1994). These have been referred to respectively as the “n−1
method” (RTIn−1) and the “n method” (RTIn) (Glynn et al.,
1999; Murray, 2002). Both indices capture the intuitive idea
that the more genetically homogeneous a data set is, the
more severe the extent of transmission.

We now make some observations about these indices.
First, defineni to be the number of cases in theith geno-
type, and letg be the number of different genotypes in the
sample. The total number of cases is

∑g

i=1 ni = n. The
fact thatnc − c = ∑g

i=1(ni − 1) motivates the term “n − 1
method”. Definingu to be the number of genotypes that
are unique in the sample (“singletons”), note thatnc − c =
(nc + u) − (c + u) = n − g, so that RTIn−1 = (n − g)/n =
1− (g/n). This shows that RTIn−1 is dependent only on the
sample size and the number of genotypes. We remark that
strictly speaking, RTIn−1 cannot equal 1, since there is al-

ways at least one genotype in the sample (g ≥ 1). To use
this index of recent transmission strictly as a proportion, we
suggest the following minor adjustment, so that the index
has a maximum of 1, and a minimum of 0.

RTI∗n−1 = n − g

n − 1
= 1 − g − 1

n − 1
.

Turning now to RTIn, we note that sincenc = n − u, it can
be rewritten as follows: RTIn = (n − u)/n = 1 − (u/n).
RTIn is therefore dependent only on the sample size and the
number of singletons.

2.2. Diversity measures from ecological studies

Because clustering can be viewed as the opposite of di-
versity, we mention measures of diversity often used in eco-
logical research. Simpson’s index is the probability that any
two individuals (isolates) chosen at random from a data set
are from the same species (genotype):

S =
g∑

i=1

ni(ni − 1)

n(n − 1)
,

whereni is the number of individuals in speciesi (geno-
type i) in the sample. This index is a measure of clustering,
with range [0,1]. Simpson’s diversity index (1− S and its
variants such as sampling with replacement) are also used
in population genetics, where they are called heterozygosity
and gene diversity and are used to study global patterns of
variation (e.g.Selander and Levin, 1980).

Similarly, the Shannon-Weaver index, from information
theory, is used to describe the diversity of ecological commu-
nities. This index is given byH = − ∑g

i=1(ni/n) ln(ni/n).
Because the greatestH possible is ln(n), a clustering index
based on this quantity (normalising the range to be [0,1])
would be

CH = 1 − H

ln(n)
=

g∑
i=1

ni ln(ni)

n ln(n)
.

The index 1− S has been used in molecular epidemiology
to measure how well a genetic marker discriminates strains
(Hunter and Gaston, 1988; Dale et al., 2003). We remark
that bothS and CH can be used to measure the genetic
homogeneity of a set of pathogenic genotypes (though we
could not find examples in the literature).

One noteworthy difference between the RTI indices and
these indices is that the latter use all of the cluster sizes. At
this stage it is not clear whether this is of critical import for
making inferences about the epidemic.

2.3. Genetic heterogeneity and mutation rate

Because the mutation rate of the marker affects the con-
figuration of clusters in a sample, conclusions about the
epidemic based on clusters may be prone to error unless mu-
tations are considered. A highly heterogeneous data set may
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Table 1
Inferences about an outbreak based on the homogeneity of data

Mutation Rate Data

Homogeneous Heterogeneous

High Severe outbreak Ambiguous
Low Ambiguous Mild outbreak

lead to an underestimate of the speed of the outbreak if the
mutation rate is high, since the reason for the observed di-
versity may be rapid mutation rather than slow transmission.
Conversely, while transmission may appear to be fast be-
cause of a genotypically homogeneous data set, the observed
clustering may simply indicate a slow mutation process.

Furthermore, ignoring mutation may lead to false out-
comes when comparing different data sets. For example, a
genetically heterogeneous data associated with a high muta-
tion rate may conceivably represent a more severe outbreak
than a homogeneous data set associated with a low mutation
rate, as summarised inTable 1. Existing clustering indices
are unable to detect this possibility.

One consequence of this problem is that direct compar-
ison of data sets generated using different markers is not
possible. This is partially recognised in molecular epidemi-
ology when it is noted that some markers have greater dis-
criminatory power than others(Tenover et al., 1995; Kremer
et al., 1999; Coenye et al., 2002). As new markers are devel-
oped and replace older techniques the information gathered
through the old methods will be made redundant(Foxman
and Riley, 2001). It would be desirable to retain such in-
formation, for example by incorporating mutation rates into
clustering indices.

A basic mutation model and the graph-theoretic organ-
isation of the data (as described later, inSection 3.2and
Appendices A and B) can be used to derive a simple alter-
native to the RTI which we call the transmission mutation
index (TMI):

TMI = µ̃
(n − g + ν1)

ν1
, (1)

whereµ̃ is an independent estimate of the mutation rate of
the marker, andν1 is the number of single-step mutation
events inferred from the data. A more formal definition of
ν1 is given inAppendix B.

Although the TMI uses extra pieces of information (ν1
andµ̃) and thus appears to moderate the sensitivity toµ, it
needs to be further examined. Possible limitations are that it
may be over-sensitive to small values ofν1, and the mutation
rate of a genetic marker is not always known with precision.

3. Approaches to visualising genotypic data from clonal
pathogens

3.1. Current graphical techniques

The grouping of isolates into clusters of identical
genotypes—as discussed above—does not make much

use of the genetic relationships among the isolates. At
the other extreme, there have been efforts to organise all
genotypes present in a sample according to genetic rela-
tionships, i.e., by constructing phylogenies (e.g.Duchene
et al., 2004). A popular method for analysing DNA fin-
gerprints is the use of the Dice coefficient for assign-
ing distances between DNA fingerprints, in conjunction
with the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) or Neighbour-Joining for grouping geno-
types (e.g.Toungoussova et al., 2002). Once a tree or
dendrogram is drawn it can be eyeballed to locate sim-
ilar cases that “cluster” together. Although these trees
are not necessarily intended to represent evolutionary re-
lationships, they are highly suggestive of evolutionary
trees.

When there is insufficient information in the genetic
marker, the use of phylogenies is problematic. There are
large uncertainties involved in the estimation of distance.
Furthermore, it is not clear how functions such as Dice are
related to time, but the relationships are unlikely to be linear.
That is, the distance measure may not adequately reflect evo-
lutionary divergence so that time is distorted in the inferred
trees. Thus, in this context, dendrograms attempt to extract
more information from the marker than it carries. They also
make little use of information about genotypically identical
isolates.

A compromise between only using clusters of identical
genotypes and drawing phylogenies is to construct graphs
with genotypes at internal nodes, edges reflecting direct
evolutionary relationships, and cluster sizes indicated at
the nodes. In the context of infectious disease outbreaks,
these latter developments promise improved insight into
recent epidemiological history. For instance, the algorithms
BURST and eBURST have been applied to multilocus
sequence typing (MLST) data from a variety of bacterial
species(Feil et al., 2004). A related idea was used byZhu
et al. (2001)for Neisseria meningitidis. Similar graphical
visualisations called Minimum Spanning Networks have
been used to study population structure in eukaryotic or-
ganisms(Excoffier et al., 1992; Excoffier and Smouse,
1994).

In the study ofDuchene et al. (2004)two further tech-
niques, Median-Joining Networks and Cladistic Nested
Analysis, were deployed and compared in the analysis of
spoligotypes from four Caribbean islands. InSection 3.3
we will re-analyse their data using a new approach outlined
in Section 3.2.

3.2. Cluster-graphs and transmission trees

In this section we will describe a new graph-theoretic
construct for representing and analysing clonal pathogenic
genotypes.

Given a data set of isolates we first form clusters ofg dis-
tinct genotypes. Consider now a graph in which each vertex
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Fig. 1. A cluster-graph representing a sample with five distinct genotypes.
Each node represents a cluster of genotypically identical isolates, and the
sizes of clusters are indicated inside the circles. There are two connected
components in this example.

represents a cluster. Connect all pairs of vertices whose
genotypes are separated by a single mutation step. This is
what we will call a cluster-graph. For example, suppose
there are six distinct genotypes,g1 · · · g6, respectively with
6, 4, 2, 2, 3, 2 isolates of each type. Suppose there are sin-
gle mutation steps between the following pairs of geno-
types:(g1, g2), (g1, g3), (g2, g3), (g2, g4), (g5, g6), but not
between any other pairs. Then the cluster-graph would be
as inFig. 1. Note that a cluster-graph will not necessarily
be connected.

We now define a second kind of graph based on
cluster-graphs that can be used to interpret measures of
clustering. A transmission tree spans all the isolates in a
connected component of the cluster-graph. The number
of edges in such a tree equals the number of vertices in
the connected component minus 1. Each edge represents a
possible transmission event between the vertices at either
end of the edge. The entire data set can be viewed as a
transmission forest.

In Fig. 2 we show an example of a possible transmission
forest based on the cluster-graph ofFig. 1. The biological
basis for this construct is discussed inAppendix A. The aim
here is not to infer the actual history behind the data set
as a transmission forest; rather, it is to use the concept to
summarise and interpret the data.

3.3. Analysis of spoligotype data: an example

In this section we produce a cluster-graph representing
data fromDuchene et al. (2004)to demonstrate the methods
discussed inSection 3.2. These data consist of 321 isolates
representing 47 distinct alleles from four Caribbean islands.
Spoligotyping in general produces data which are richer in
close genetic relationships than for example IS6110. This
aspect of spoligotyping means data thus obtained reveal

Fig. 2. One possible transmission tree based on the cluster-graph of
Fig. 1. Dashed lines represent transmissions within clusters, and solid lines
represent transmissions between clusters, involving a single mutation.

more about evolutionary connections between genotypes,
and thus makes the cluster-graphs more informative. The
Duchene et al. (2004)data set is suitable for our purposes
as it represents an outbreak from a particular geographical
region.

The steps taken in the construction of the cluster-graph
were as follows. (1) Identify pairs of genotypes that can be
connected by a single mutation event. In the case of spolig-
otypes, this means a single deletion event. (2) Names of
genotypes and other relevant information label the vertices.
Circles at vertices may be related to the size of the clus-
ter. (3) Edges are drawn whenever two spoligotypes can be
connected by a single deletion event. Where the direction
of mutation is known, as is the case for spoligotypes, these
edges can be drawn as arrows. Note, the final graph will not
necessarily be a tree or a forest. Cluster-graphs are similar
to the BURST representation of genotypes, except that here
we do not attempt to resolve graphs into trees, and the direc-
tion of mutation is based on the presumed deletion process
in spoligotypes.

Fig. 3 shows the cluster-graph for theDuchene et al.
(2004)data set. Note that we did not attempt to resolve evo-
lutionary histories into trees. There may be little advantage
in making these additional inferences, and in fact some in-
formation may be lost. For example, where the graph indi-
cates two possible paths, it may not be feasible to determine
which one evolution took. Indeed, it may even be that ho-
moplasy (independent mutation events producing the same
genotype) occurred.

Observe that the use of the cluster-graph reveals the
ancestral genotype to be the spoligotype labelled53. In
agreement with the original reference, the three major clades
identified byDuchene et al. (2004)are clearly visible in our
cluster-graph (Fig. 3). These are the Haarlem superfamily
(spoligotypes connected to types50 and 47, below type
53), the LAM superfamily (spoligotypes connected to type
42 above type53), and the X superfamily (spoligotypes
connected to type119 to the right of type53). Finally, a
fourth miscellaneous set of genotypes includes the putative
ancestral type53.

Incidentally, applying the indices previously discussed to
this data set gives the following values: RTIn = 0.935,
RTIn−1 = 0.854, S = 0.066, CH = 0.464, and TMI =
0.31. The RTI values here are very high compared to the
same statistic computed on IS6110 data. For example, the
data fromSmall et al. (1994)gives RTIn−1 = 0.311. This
difference is presumably due to the very different muta-
tion rates of the two markers involved, and not to the lev-
els of recent transmission. Support for this presumption can
be found in the observation that IS6110-typing discrimi-
nates isolates more finely than spoligotyping(Kremer et al.,
1999). This outcome demonstrates the problem concern-
ing the mutation rate of markers described inSection 2.3.
Note also that to compute TMI requires knowledge of the
mutation rate, an accurate estimate of which is not cur-
rently available. In order to obtain the TMI value above,
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Fig. 3. Cluster-graph drawn from spoligotype data inDuchene et al. (2004). Vertex size indicates the size of the cluster; the list of fav numbers indicates
the distribution of cases across the four regions from which isolates were taken (in order, Guadeloupe, Martinique, Haiti, Cuba). Arrows point to genotypes
possibly derived by deletion in the marker locus.
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we use the valueµ = 0.04 per year, a choice explained in
Appendix C.

4. Graph-theoretic interpretation of indices

We now turn to the interpretation of some of the cluster-
ing indices described in this paper from a graph-theoretic
point of view. If we construct an arbitrary transmission-forest
subject to the constraints imposed by the cluster-graph of a
given data set, then:

RTIn−1 = edges within clusters

vertices in forest

and

RTI∗n−1 = edges within clusters

maximum possible edges in forest
.

Here, we see again that RTIn−1 must be strictly less than
one, since the maximum number of edges in a forest is the
number of edges in a tree spanning all vertices, which is one
less than the number of vertices (n − 1).

Since the edges represent transmissions, RTIn−1 and
RTI∗n−1 are natural measures of the severity of an out-
break. One advantage of viewing clustering in terms of
transmission trees and forests is that the focus is shifted
from cases to transmissions, which are the phenomena of
interest.

Another example is Simpson’s index. This is the propor-
tion of all possible edges between vertices that are within
clusters. Similarly, using Cayley’s result that the number of
rooted spanning trees onk vertices iskk−1, we can inter-
pret CH (based on Shannon’s index) as follows. Letσ be
the number of forests consisting of trees spanning distinct
clusters in the data set, andπ be the number of ways of
choosing one vertex from each cluster. Then

CH = ln(σπ)

max( ln(σπ))
,

where the maximum in the denominator is over all possible
configurations of the data set into clusters (which occurs
when all isolates are in the same cluster).

The TMI can also be interpreted in terms of transmission-
forests:

TMI = mutation rate× edges in forest

edges involving mutation
.

5. Discussion

We have examined some clustering indices for measuring
the extent of transmission of clonal pathogens such as tuber-
culosis. A common problem of all of these indices, includ-
ing those derived from diversity measures, is their failure to
account for mutation. One possible solution is to prescribe

guidelines for the interpretation of data based on the number
of mutation steps apparently involved among the genotypes
(Tenover et al., 1995). More quantitative and biologically
explicit approaches may be possible in the future. One pos-
sibility is to derive indices that account for mutation, such
as the TMI. As noted above (Section 2.3), the TMI defined
in this paper is sensitive to some parameters, and requires
further study.

Motivated by the difficulties arising from current meth-
ods, we have investigated an alternative way to summarise
genotypic data using graph-theoretic concepts. We first in-
troduced cluster-graphs, which are useful in visualising data.
They provide information about the abundance of particular
genotypes in the sample as well as partial information about
possible evolutionary relationships. Rather than attempting
to find the correct set of evolutionary relationships, we be-
lieve it may be more useful to show (non-tree) graphs that
include alternative possibilities. Second, we discussed trans-
mission trees, whichare strictly trees. The idea behind these
is to translate information about isolates and transmissions
into graph-theoretic constructs, which can then be used as
a way of understanding indices measuring the severity of
outbreaks. Cluster-graphs and transmission trees may them-
selves suggest further ways to characterise disease transmis-
sion using a given data set.

Challenges remain in molecular epidemiology to the de-
velopment of quantitative methods that (1) accurately reflect
the severity of an outbreak, (2) account for mutation, and (3)
are not susceptible to the effects of sampling. In addition to
the theoretical development of such a method, an empirical
problem is the determination of mutation rates of genetic
markers. Although some progress has been made in recent
years(Rosenberg et al., 2003), this programme is at an early
stage. While one of the points of the present paper is that
increased efforts should be made to estimate the mutation
rates of markers, even a “rough idea” of the rates may be
useful to know, as indicated inTable 1.

The effect of sampling is a universal problem in the anal-
ysis of molecular epidemiological data (as for all biological
data). A number of studies examine the bias in estimates
of clustering produced by sampling(Glynn et al., 1999;
Murray, 2002). These papers find that the incomplete nature
of all samples systematically leads to the underestimation of
clustering. In general, the relationship between sample size
n and the number of observed genotypesg is complex and
depends on the details of both sampling and mutation as well
as population history. A further related issue is the manner
in which data are collected: random samples are very dif-
ferent from samples resulting from contact tracing, which
are different again from samples collected at a given point
such as a hospital or clinic. Future work should address the
issue of sampling, possibly by adapting population genetic
approaches(Ewens, 1972).

Based on this investigation, our main recommendations
for the molecular epidemiology of tuberculosis and other
diseases are as follows.
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1. Caution should be taken when interpreting the trans-
missibility of outbreaks based on indices such as
RTIn−1, RTIn, S and CH . It is perilous to compare
outbreaks using different markers or different com-
binations of markers without an adequate frame-
work that accounts for mutation. Similarly, data
sets of different size should only be compared with
caution.

2. In practice, it will be useful to identify relationships
among genotypes through single mutation steps. The
results can then be presented in graphs (trees) such as
in Feil et al. (2004), Zhu et al. (2001), andDuchene
et al. (2004)or cluster-graphs such asFig. 1. Graphs
(phylogenies or the other graphs discussed here) do
not indicate by themselves the severity of an outbreak,
but they do assist in organising the data to make sense
visually.
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Appendix A. Transmission trees

To use transmission trees as a model of epidemics, we
describe the necessary biological assumptions.

1. Each individual in the sample was infected once.
2. Each individual in a given connected component of the

cluster graph is connected via transmission to another
in the same connected component.

3. Each genotype can arise only once. This is the same
assumption giving rise to the Infinite Alleles Model
(IAM) in population genetics.

4. Although the mutation rate is high enough to be mod-
elled simultaneously with transmission, we will assume
it is low enough that at most, only a single mutation
event can occur during a given passage through a host.
This assumption was imposed earlier by considering
only single-step mutations in the cluster-graph, and can
readily be relaxed if the marker is known to mutate
rapidly.

The first two assumptions imply that all cases whose isolates
are sufficiently closely related are potentially connected by
transmission. Within a given cluster of sizeni, there are
exactlyni −1 transmissions that took place among the cases
in the cluster (a tree ofn vertices hasn − 1 edges). These
two assumptions are inspired by reasoning in(Small et al.,
1994).

Let each edge between clusters in a cluster-graph rep-
resent a single potential transmission event. These trans-
missions are therefore associated with mutation events. The

infinite alleles assumption (number 3) together with assump-
tion 1 imply that there can be at most one edge between
clusters and that the data can only be explained byspanning
trees of the connected components.

Appendix B. An index based on the maximum
likelihood estimation of passage time

Define the parameterτ as the time between transmission
events. In other words,τ is the time the pathogen has to
undergo changes while in the transmitting or receiving host.
Another way to think ofτ is as the length of each edge in a
transmission tree. Letµ be the mutation rate per unit time
of the genetic marker being studied, where time is measured
in the same units asτ.

Let M be the random variable describing the number of
changes in a given time interval. Under the common assump-
tion that genotypes change according to a molecular clock
(Felsenstein, 1981; Tavare et al., 1997; Rosenberg et al.,
2003),

P(M = m) = (µτ)m e−µτ

m!
.

We make the further assumption that mutation is rare enough
that in a given transmission there can be at most a single
change in a genotype. In other words, we are only concerned
with P(M = 0) andP(M = 1).

Let E be the set of edges in the transmission tree. For
an edgej ∈ E let mj be the (minimal) number of mutation
steps connecting the two genotypes associated with the edge
(the restriction on the number of mutations in a transmission
means that we are assumingmj = 0 or 1). The likelihood of
the compound parameterµτ is the probability of observing
the genotypes in the data set under the model of mutation:

Lik (µτ) = P(Genotypes|µτ)

=
∏
j∈E

P(M = mj)

=
∏

j∈E, mj=0

e−µτ
∏

j∈E, mj=1

µτ e−µτ.

Define ν1 to be the number of edges involving a 1-step
change, andν2+ to be the number of edges involving
multi-step changes. Settingν2+ = 0 (we have assumed
mj = 0 or 1) the logarithm of the likelihood is then
ln(Lik (µτ)) = −µτ(n− g+ ν1)+ ν1 ln(µτ), whereg is the
number of genotypes andn is the total number of cases in
the data set. Therefore, the maximum likelihood estimator
(MLE) for µτ is µ̂τ = ν1/(n − g + ν1). Note that the num-
berν1 is uniquely defined for a given cluster-graph as each
spanningcluster-tree will have the same number of 1-step
mutations. The numberν1 is also equal to the number of
genotypesg in the data set minus the number of connected
components.
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We can use the maximum likelihood estimatêµτ to con-
struct a measure of the speed of an epidemic that is inversely
related to the passage timeτ:

TMI = µ̃

µ̂τ
= µ̃

(n − g + ν1)

ν1
, (B.1)

whereµ̃ is an independent estimate of the mutation rate.

Appendix C. Mutation rate of spoligotypes

A working estimate of the mutation rate of spoligotypes
can be made by comparing the levels of spoligotype diversity
with genotypes from IS6110, for which the mutation rate is
known(Rosenberg et al., 2003).

Ewens (1972)showed that under a standard population
genetic model (the infinite alleles model) the maximum like-
lihood estimator of an important population parameterθ =
4Nµ, whereN is the effective population size andµ is the
mutation rate, is given by the solution of

g =
n−1∑
i=0

θ

θ + i

whereg is the observed number of alleles in a sample of
genotypes.

In the globally sampled data ofKremer et al. (1999)84
different genotypes (alleles) out of 90M. tuberculosis com-
plex isolates were observed using IS6110. With the same
isolates, 61 genotypes were observed using spoligotyping.
The population conditions are identical for these two sets of
numbers since they come from thesame 90 isolates. Hence,
therelative mutation rate of spoligotypes and IS6110 can be
estimated by taking the ratios of the estimates ofθ. Using
Ewens’ sampling theory, these figures imply that spoligo-
types mutate at around 13.5% the rate of IS6110. Using an
earlier estimate of IS6110 mutation rate(Rosenberg et al.,
2003)of 0.287 per genome for a strain with a typical copy
number of 10, this corresponds to a mutation rate for spolig-
otypes of around 0.039 events per year.
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