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Abstract
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In this paper we find an explicit non-recursive expression for the coefficients appearing in the
ear combinations. These coefficients are expressed in terms of certain permutation characteSn.
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0. Introduction

There are now three distinct descriptions of the centre of the Iwahori–Hecke algeH
of the symmetric groupSn. It has two nice bases, one consisting of norms overQ[ξ ] [13],
and one a “minimal basis” of class elements overZ[ξ ] [5,9]. Thirdly, it is now known that
the symmetric functions in Murphy elements are precisely the centre ofH overZ[ξ ] [10],
and it follows that the elementary symmetric functions in Murphy elements genera
centre overZ[ξ ]. A natural question is then to ask “How are these descriptions rela
The relationship between the elementary symmetric functions of Murphy elements a
minimal basis is now known precisely at least in one direction [4], but relationships
the norm basis have been opaque. Furthermore, the elucidation of the connections b
the norm basis and the other bases is of interest since the norms of [13] are natural
structures which have been used to define Brauer-type homomorphisms for Hecke a
[3,6,12] andq-Schur algebras [2].

The goal of this paper is to describe an explicit relationship between the norm
and the minimal basis for the centre of the Hecke algebra of the symmetric groupSn. This
relationship is given by an expression for the coefficients of class elements (the m
basis) as they appear in the norms. These coefficients are described in terms of the
of certain permutation characters ofSn.

Let α andλ be partitions ofn, with wα an element of the conjugacy classCα of Sn. Let
lλ and lα be the lengths of the minimal elements in the corresponding conjugacy c
of Sn, and letξ be the defining indeterminate of the Hecke algebra. Let(1Sλ)

Sn be the
permutation character ofSn which arises from the induction toSn of the trivial character
on the parabolic subgroupSλ. The main result is as follows.

Theorem 9.2. Let bα be an element of the norm basis and letΓλ be an element of th
minimal basis. Then

bα =
∑
λ�n

(1Sλ)
Sn(wα)ξ lλ−lαΓλ.

A considerable amount of machinery, which involves several results of indepe
interest, is developed in the course of obtaining Theorem 9.2.

The preliminary Section 1 introduces most of the basic definitions and notation
throughout the paper. The reader may wish to skim this section and return for refere
required later in the paper. Section 2 contains results about double coset representa
parabolic subgroups in the symmetric groupSn which are required for Section 8. A formu
for the square of the Hecke algebra element corresponding to a distinguished doub
representative is given in Section 3. In Section 4, the main properties of the bases
centre are briefly reprised. Section 5 introduces an inner product on the Hecke alge
gives some elementary properties. In Section 6, we find the coefficient ofΓλ in bα when
α is trivial (Theorem 6.3), while in Section 7 we determine the coefficient of the Co
class elementΓ(n) in bα for all α � n (Theorem 7.4). To establish Theorem 7.4, we sh
that the basis of norms satisfies a partial order consistent with the refinement or

partitions (Theorem 7.2). The descriptions of coefficients in Theorems 6.3 and 7.4 are later
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made redundant by Theorem 9.2, but are necessary for its proof. Section 8 gives th
projection theorem (Theorem 8.1), which uses a Mackey-type decomposition to give
for projecting norms onto a maximal parabolic subalgebra. This result has been u
study the Brauer homomorphism in [3]. In Section 9, Theorem 8.1 is generalized to
for projecting onto arbitrary parabolic subalgebras (Theorem 9.1), and the main th
quoted above is deduced. Finally, the main result is demonstrated in Section 10 with
examples.

1. Definitions and notation

Throughout we takeN to mean the set of non-negative integers.

1.1. Compositions, partitions and multipartitions

A compositionλ is a finite ordered set of positive integers. Ifλ = (λ1, . . . , λr ), theλi

are called thecomponentsof λ. If λ is a composition we write|λ| = ∑r
i=1 λi . If |λ| = n we

sayλ is acomposition ofn, and we writeλ � n. Two compositions are said to beconjugate
if they have the same components.

If λ = (λ1, . . . , λr ) � n then we defineλ− 1 to be the composition ofn obtained fromλ

by replacing eachλi > 1 by the juxtaposed ordered pair of positive integersλi − 1 and 1.
For example, ifλ = (3,4,1,7) thenλ − 1= (2,1,3,1,1,6,1).

If λ andµ are compositions ofn and eitherλ = µ or λ can be obtained fromµ by
adding together adjacent components ofµ, we sayµ is arefinementof λ and writeµ � λ.

A partition of n is a composition whose components are weakly decreasing from l
right. If λ is a partition ofn we writeλ � n.

A multipartition is a finite ordered set of partitions. Aλ-multipartition of n for λ =
(λ1, . . . , λr ) � n is an ordered set of partitionsθ = (θ1, . . . , θr ) with θi � λi for eachi =
1, . . . , r . Note that from any multipartitionθ of n we can derive a unique compositionλ
of n by removing the internal parentheses. We call this unique compositionλ, thederived
compositionof the multipartitionθ . For example,θ = ((4,1), (3,2,1), (2,1)) has derived
compositionλ = (4,1,3,2,1,2,1) of n = 14.

By thecomponentsof aλ-multipartition ofn, we mean the components of its constitu
partitions. Ifα � n, then aλ-multipartition ofα is aλ-multipartition ofn whose compo-
nents are the components ofα. LetΛλ be the set ofλ-multipartitions ofn, and letΛλ(α) be
the set ofλ-multipartitions ofα. For example, a(3,5,2)-multipartition of(3,2,2,1,1,1)

is ((2,1), (3,1,1), (2)).
Note that for many choices ofλ andα there are noλ-multipartitions ofα; for instance

there are no(3,2)-multipartitions of(4,1).

1.2. The symmetric group

Let Sn be the symmetric group onn letters with generating set of simple reflections

{ }

S := si = (i i + 1) | 1� i � n − 1 .
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We use both thesi notation and the cycle notation as expedient. We adopt the conve
thatS0 = S1 = {(1)}.

We say an expression forw ∈ Sn is reducedif there is no way to writew as a word
in fewer generators. In this case we say the length�(w) of w is this minimal number o
generators. Symmetric groups act on sets of vectors in Euclidean space knownroot
systems. One can define the concepts ofpositiveandnegativeroots which in turn can be
used to describe the length of an element ofSn. In particular ifΦ+ andΦ− := {−v | v ∈
Φ+} are the sets of positive and negative roots respectively, then�(w) = |w(Φ+) ∩ Φ−|.
A set of positive roots for the root system ofSn is the setΦ+ = {ei − ej | 1 � i < j � n}
where{ei | 1� i � n} is the set of standard basis vectors forRn.

Forλ = (λ1, . . . , λk) � n define

Sλ := Sλ1 × Sλ2 × · · · × Sλk
,

where for λi > 1, Sλi
is the subgroup ofSn generated by the set{sλ1+···+λi−1+1, . . . ,

sλ1+···+λi−1}, and forλi = 1, Sλi
is the trivial subgroup. Such a subgroupSλ is called a

parabolicsubgroup ofSn. Note thatSµ � Sλ if and only if µ � λ (that is,µ is a refinemen
of λ).

If θ = (θ1, . . . , θt ) is a multipartition (theθi are partitions), then setSθ := Sθ1 ×· · ·×Sθt .
The unique element of aSλ–Sµ double coset ofSn of minimal length is called adistin-

guisheddouble coset representative (such elements are well known to be unique—se
Let Dλµ denote the set of distinguishedSλ–Sµ double coset representatives inSn.

The conjugacy classes ofSn are indexed by partitionsλ of n. WriteCλ for the conjugacy
class consisting of elements ofSn of cycle typeλ. Write Cλ for the sum of elements in th
conjugacy classCλ. If λ = (λ1, . . . , λr ) then set

wλ = (s1 . . . sλ1−1)(sλ1+1 . . . sλ1+λ2−1) . . . (sλ1+···+λr−1+1 . . . sλ1+···+λr−1)

where we take each empty sequence ofsi ’s (whenλj = 1) to be the identity. Thenwλ is a
Coxeter elementof the subgroupSλ, and also a minimal length element of the conjug
classCλ in Sn.

In Sλ for λ � n, the conjugacy classes are indexed by the setΛλ of λ-multipartitions ofn.
In particular, inS(k,n−k), the classes are indexed by(k, n− k)-multipartitions ofn. If λ � n

andθ ∈ Λλ, thenCθ denotes the conjugacy class inSλ corresponding to the compositio
of n derived fromθ .

As usual,|Cθ |Sλ denotes the size of the conjugacy classCθ in Sλ.
Let lλ be the length of a shortest element of the conjugacy classCλ, that is,lλ = �(wλ).
Forw ∈ Sn and fixedk ∈ {1, . . . , n− 1}, define #(w) to be the minimal number of time

the generatorsk = (k k+1) must appear in any reduced expression forw. Unless otherwise
noted,k is assumed to be fixed throughout this paper. Forw ∈ Sn andI ⊆ {1, . . . , n}, we
write w.I for the image of the action ofw on the setI .

The Bruhat orderon Sn is defined as follows. Forv,w ∈ Sn, we sayv � w if there
exists a reduced expression ofv which is a subword of a reduced expression forw.

For any groupsH � G, we use the standard notationCG(H) andNG(H) to indicate

thecentralizerandnormalizerrespectively, ofH in G.
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1.3. The Hecke algebra

In this paper we use the normalized version of the generators for the Hecke al
giving us an algebra over the ringZ[ξ ], whereξ is an indeterminate. The exact conne
tion between this definition and the standard definition overZ[q1/2, q−1/2] is given in the
remark below.

The Iwahori–Hecke algebraH := Hn of Sn is the associativeZ[ξ ]-algebra generate
by the set{T̃s | s ∈ S} with identity T̃1 and subject to the relations

T̃si T̃sj = T̃sj T̃si if |i − j | � 2,

T̃si T̃si+1T̃si = T̃si+1T̃si T̃si+1 for 1� i � n − 2,

T̃ 2
si

= T̃1 + ξ T̃si for 1� i � n − 1.

If w = si1 . . . sir is a reduced expression forw, then we writeT̃w := T̃si1
. . . T̃sir

. ThenH is
a freeZ[ξ ]-module with basis{T̃w | w ∈ Sn}.

When specialization ofH to ξ = 0 is used in this paper it will be assumed that
specialization is to the group algebraZSn. If h ∈ H we writeh|ξ=0 for the specialization
of h at ξ = 0.

If λ � n, we letHλ denote the parabolic subalgebra ofHn generated by{T̃s | s ∈ S′},
whereS′ is the subset ofS consisting of the simple reflections which generate the parab
subgroupSλ. For any multipartitionθ of n with derived compositionλ of n, we define
Hθ := Hλ.

Remark. SetT̃s := q−1/2Ts for s ∈ S andξ = q1/2−q−1/2. ThenH is a subalgebra ofHq ,
the more standard Hecke algebra generated by{Ts | s ∈ S} overZ[q1/2, q−1/2]. A princi-
pal reason for defining the algebra with normalized generators is that doing so giH
a natural positivity and an associated partial order on the positive cone. Many resu
the centre ofH have more natural statements and proofs when the algebra is defin
this way. The main results of this paper are all readily translated back to statemen
Z[q1/2, q−1/2].

LetH+ = ∑
w∈Sn

N[ξ ]T̃w. Fora, b ∈H+ we saya � b whenb−a ∈H+. If in addition
b − a �= 0 then we writea < b. The partial order restricts to the positive cone of the b
ring, N[ξ ] = Z[ξ ]+. For a, b ∈ N[ξ ], we saya � b whenb − a ∈ N[ξ ], anda < b if in
additionb − a �= 0.

If A is a subalgebra ofH, then thecentralizer ofA in H, denotedZH(A), is the set
of elements inH which commute with every element ofA. Thecentreof H is Z(H) :=
ZH(H). SetZ(H)+ := Z(H) ∩H+.

We say that an element̃Tw in Hn containsa particular generators ∈ S whens � w in
the Bruhat order. We also say (with some abuse of language) thath = ∑

w∈Sn
rwT̃w ∈Hn
containsT̃w, or thatT̃w occursin h, if rw �= 0.
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2. Double cosets of maximal parabolic subgroups

This section and the next contain a number of results needed for later sections, m
which appear in [12] but not, as far as we can see, in the available literature.

Recall thatk ∈ {1, . . . , n − 1} is fixed. Also, throughout this section we letM =
min{k,n − k} andλ = (k, n − k) � n. For 0� m � M andw ∈ Sn, set

dm := (k k + m)(k − 1 k + m − 1) . . . (k + 1− m k + 1),

D := {dm | 0� m � M},
‖w‖ := ∣∣w.{1, . . . , k} ∩ {k + 1, . . . , n}∣∣.

Proposition 2.1.

(1) The elementsdm satisfy the following:
(a) d−1

m = dm,
(b) �(dm) = m2,
(c) #(dm) = m = ‖dm‖.

(2) D = Dλλ.

Proof. Part (1)(a) is obvious sincedm is a product of disjoint transpositions.
The results of (1)(b) and (1)(c) are trivial form = 0 and m = 1, so we assum

m � 2. Using a standard root system argument (see for example [1]), observe thdm

takes the set{ek−i − ek+1+j | 0 � i, j � m − 1} of m2 positive roots to negative root
which implies that�(dm) � m2. Sincedm = dm−1(sk−m+1 . . . sk−1sk+m . . . sk), we have
that �(dm) � �(dm−1) + 2m − 1. By induction,�(dm−1) = (m − 1)2. Hence�(dm) �
(m − 1)2 + 2m − 1= m2, giving �(dm) = m2, which proves part (1)(b).

As above, writedm = dm−1wsk where #(w) = 0. By induction assume that #(dm−1) =
m − 1. Therefore, #(dm) � m. From the definition ofdm it is immediate that‖dm‖ = m.

Then, since‖dm‖ � #(dm), we conclude that #(dm) = m = ‖dm‖ as required for (1)(c).
Note that ifw andu are in the sameSλ–Sλ double coset ofSn, then‖w‖ = ‖u‖. As

‖dm‖ = m for eachm, we have that eachdm lies in a distinctSλ–Sλ double coset. Observ
that |D| = M + 1, and since there areM + 1 distinct Sλ–Sλ double cosets [11, Theo
rem 1.3.10],D is a set of double coset representatives. Since any elementw of SλdmSλ

takes them2 above-mentioned positive roots to negative roots, it follows that�(w) � m2.
Thusdm is distinguished, proving (2). �
Corollary 2.2. Letx ∈ Sn. Then

(1) #(x) = ‖x‖,
(2) x ∈ SλdmSλ if and only if#(x) = m.

Proof. Suppose thatx ∈ SλdmSλ. Then we can writex = ydmz with #(y) = 0 = #(z), and
clearly, #(ydmz) � #(dm). Recall that #(dm) = ‖dm‖ from Proposition 2.1(1)(c). Sincex

anddm are both elements ofSλdmSλ, we have‖x‖ = ‖dm‖. Hence, #(x) = #(ydmz) �
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#(dm) = ‖dm‖ = ‖x‖. Note that each occurrence ofsk in any expression forx produces a
most one element ofx.{1, . . . , k} ∩ {k + 1, . . . , n}. Thus, #(x) � ‖x‖, which proves (1).

We use part (1) and arguments in its proof to establish (2). Forx ∈ SλdmSλ, we have
#(x) = ‖x‖ = ‖dm‖ = m. Conversely, if #(x) = m, then‖x‖ = m = ‖dm‖, which implies
thatx ∈ SλdmSλ, and the proof is complete.�

For 0� m � M , let

Pm := Sλ ∩ S
dm

λ .

Proposition 2.3.

(1) Pm = P
dm
m .

(2) Pm = S(k−m,m,m,n−k−m).

Proof. Part (1) is immediate from Proposition 2.1(1)(a).
ClearlyS(k−m,m,m,n−k−m) � Sλ. Observe thatdm normalizesS(k−m,m,m,n−k−m), and so

S(k−m,m,m,n−k−m) = S
dm

(k−m,m,m,n−k−m) � S
dm

λ ,

giving S(k−m,m,m,n−k−m) � Pm.
If sk−m ∈ S

dm

λ , thendmsk−mdm ∈ Sλ. But

dmsk−mdm = sk−msk−m+1 . . . sk−1sksk−1 . . . sk−m+1sk−m

which implies thatsk ∈ Sλ, a contradiction. Hence,sk−m /∈ S
dm

λ . Similarly, sk+m /∈ S
dm

λ .
SincePm is parabolic it follows thatPm � S(k−m,m,m,n−k−m), and (2) is proved. �
Corollary 2.4. If w ∈ Pm then�(dmwdm) = l(w).

Proof. Immediate from Proposition 2.3(2) and the definition ofdm. �
Corollary 2.5. Let U be a parabolic subgroup ofPm. Let r be a distinguished right cose
representative forU in Pm. Thendmrdm is a distinguished right coset representative
Udm in Pm.

Proof. This is immediate from Corollary 2.4.�

3. The square of the Hecke algebra element corresponding to a distinguished double
coset representative

The goal of this section is to prove Proposition 3.5, which gives an expansion fo
square of the Hecke algebra element corresponding to a distinguished double cose

sentative of a maximal parabolic subgroup. Proposition 3.5 forms part of the machinery



A. Francis, L. Jones / Journal of Algebra 289 (2005) 42–69 49

ximal

f

needed for our analysis in Section 8 of the projection of the norm basis onto a ma
parabolic subalgebra. Throughout this section we letλ = (k, n − k) � n.

Forx, y, z ∈ Sn, define the polynomialfxyz ∈ N[ξ ] to be the coefficient of̃Tz occurring
in the expansion of̃TxT̃y . That is, write

T̃x T̃y =
∑
z∈Sn

fxyzT̃z. (3.1)

Lemma 3.1. Letx, y, z ∈ Sn, with fxyz �= 0.

(1) #(x) − 1� #(skx) � #(x) + 1.
(2) If #(x) �= #(y) then#(z) � 1.

Proof. Firstly note that (2) follows immediately from (1) by induction on the length ox

or y. For (1), the upper bound is clear.
We will use induction on #(x) = t to establish the lower bound in (1). Writex =

w1dtw2, with w1,w2 ∈ Sλ (so that #(w1) = #(w2) = 0), and assume that #(skw1dtw2) <

t − 1. Thenskw1dtw2 ∈ SλdvSλ for somev < t − 1. That is, skw1dtw2 = x̂ for some
x̂ ∈ SλdvSλ. Thendt = w−1

1 skx̂w−1
2 . By induction, #(x̂)− 1� #(skx̂) � #(x̂)+ 1. In other

words,

v − 1� #
(
skx̂

)
� v + 1.

Since w−1
1 ,w−1

2 ∈ Sλ we have thatdt is an element of eitherSλdv−1Sλ, SλdvSλ or
Sλdv+1Sλ, each of which is impossible sincev < t − 1. �

We recall a result of Shi [14].

Theorem 3.2 [14, Theorem 8]. Letx, y, z ∈ Sn. If fxyz �= 0 thenxy � z in the Bruhat order.

An elementary consequence is the following:

Corollary 3.3. Letx, y, z ∈ Sn. If fxyz �= 0, then:

(1) #(xy) � #(z);
(2) If #(x) = t and#(y) = 0 then#(z) = t .

Lemma 3.4. For j1 � j2,

T̃sj1 ...sj2
T̃sj2 ...sj1

= T̃1 + ξ

j2∑
i=j1

T̃sj1 ...si ...sj1
.

Proof. Elementary (by induction onj2). �
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(
T̃dm

)2 = T̃1 +
∑
w∈Sn

fwT̃w

where#(w) � 1 for 0 �= fw ∈ N[ξ ]. (Note that we abbreviatefdmdmw in the expansion o
(3.1) to fw.)

Proof. For m = 1, the proposition is easily verified. Assumem � 2, and writedm =
dm−1uvsk whereu = sk−m+1sk−m+2 . . . sk−1 andv = sk+m−1sk+m−2 . . . sk+1. Then, since
d−1
m = dm anduv = vu, we have

(
T̃dm

)2 = T̃dm−1T̃uT̃vT̃sk T̃sk T̃v−1T̃u−1T̃dm−1

= T̃dm−1

(
T̃uT̃u−1T̃vT̃v−1

)
T̃dm−1 + ξ T̃dmT̃v−1u−1dm−1

.

Now, v−1u−1dm−1 ∈ Sλdm−1Sλ and so by Corollary 2.2(2), #(v−1u−1dm−1) = m − 1.
Since #(dm) = #(dm−1) + 1, Corollary 3.3 implies that every term of the produ
T̃dm T̃v−1u−1dm−1

containssk . Now

T̃uT̃u−1 = T̃1 + ξ

k−1∑
i=k−m+1

T̃sk−m+1...si ...sk−m+1

by Lemma 3.4. Similarly,̃TvT̃v−1 = T̃1 + ξ
∑m

i=2 T̃sk+i−1...sk+m−1...sk+i−1. Hence

T̃dm−1

(
T̃uT̃u−1T̃vT̃v−1

)
T̃dm−1

= T̃dm−1

(
T̃1 + ξ

k−1∑
i=k−m+1

T̃sk−m+1...si ...sk−m+1

)

×
(

T̃1 + ξ

m∑
i=2

T̃sk+i−1...sk+m−1...sk+i−1

)
T̃dm−1.

By induction, assume

(
T̃dm−1

)2 = T̃1 +
∑
w∈Sn

f ′
wT̃w

where #(w) � 1 for f ′
w �= 0, and again we have abbreviated the coefficientfdm−1dm−1w

from (3.1) tof ′
w.

The proposition will be proved if we can show that all terms in each of the produc
T̃dm−1T̃sk−m+1...sk−m+a−1...sk−m+1T̃dm−1, T̃dm−1T̃sk+b−1...sk+m−1...sk+b−1T̃dm−1



A. Francis, L. Jones / Journal of Algebra 289 (2005) 42–69 51
and

T̃dm−1T̃sk−m+1...sk−m+a−1...sk−m+1T̃sk+b−1...sk+m−1...sk+b−1T̃dm−1,

containsk , for 2� a, b � m.
The product(sk−m+1 . . . sk−m+a−1 . . . sk−m+1)(sk+b−1 . . . sk+m−1 . . . sk+b−1) adds in

length, and since it is an element ofSλ for all a andb, its product withdm−1 is length-
additive. Hence,

T̃sk−m+1...sk−m+a−1...sk−m+1T̃sk+b−1...sk+m−1...sk+b−1T̃dm−1

= T̃sk−m+1...sk−m+a−1...sk−m+1sk+b−1...sk+m−1...sk+b−1dm−1.

It is easily determined that

dm−1sk−m+1 . . . sk−m+a−1 . . . sk−m+1dm−1 ∈ Sλd1Sλ,

dm−1sk+b−1 . . . sk+m−1 . . . sk+b−1dm−1 ∈ Sλd1Sλ

and

dm−1(sk−m+1 . . . sk−m+a−1 . . . sk−m+1)(sk+b−1 . . . sk+m−1 . . . sk+b−1)dm−1 ∈ Sλd2Sλ

for anya andb with m � 2. That is, by Corollary 2.2(2)

#(dm−1sk−m+1 . . . sk−m+a−1 . . . sk−m+1dm−1)

= 1= #(dm−1sk+b−1 . . . sk+m−1 . . . sk+b−1dm−1)

and

#
(
dm−1(sk−m+1 . . . sk−m+a−1 . . . sk−m+1)(sk+b−1 . . . sk+m−1 . . . sk+b−1)dm−1

) = 2.

Thus an application of Corollary 3.3(1) to each of the products

T̃dm−1T̃sk−m+1...sk−m+a−1...sk−m+1dm−1, T̃dm−1T̃sk+b−1...sk+m−1...sk+b−1dm−1

and

T̃dm−1T̃(sk−m+1...sk−m+a−1...sk−m+1)(sk+b−1...sk+m−1...sk+b−1)dm−1
completes the proof. �
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Corollary 3.6. Let v ∈ Pm. Then

T̃dm T̃vT̃dm = T̃dmvdm +
∑
w∈Sn

gwT̃w

where#(w) � 1 for 0 �= gw ∈ N[ξ ].

Proof. Sincev ∈ Sλ, we have�(vdm) = �(v) + �(dm). From Proposition 2.3(1), we hav
that v̂ = dmvdm ∈ Pm, so also�(dmv̂) = �(dm) + �(v̂). Thus

T̃dm T̃vT̃dm = T̃dm T̃dmT̃v̂

=
(

T̃1 +
∑
u∈Sn

fuT̃u

)
T̃v̂ (where #(u) � 1 for fu �= 0, by Proposition 3.5)

= T̃v̂ +
∑
u∈Sn

fuT̃uT̃v̂ = T̃dmvdm +
∑
w∈Sn

gwT̃w

where #(w) � 1 whengw �= 0, by Corollary 3.3(2) since #(v̂) = 0. �

4. Bases for the centre of the Hecke algebra

In this section we introduce the two bases for the centre of the Hecke algebra
relationship is the main topic of this paper. With the exception of Proposition 4.2
results in this section appear in the existing literature exactly as stated here, or in s
less generality.

Some results from [13] have been restated in the context of the Hecke algebra oveZ[ξ ],
and in the generality of compositions rather than partitions where appropriate.

4.1. The norm basis

Definition 4.1. For h ∈ H, λ,µ,α � n andµ � λ, we define therelative normof h from
Sµ to Sλ to be

NSλ,Sµ(h) :=
∑
d∈D

T̃d−1hT̃d,

whereD is the set of distinguished right coset representatives ofSµ in Sλ. In addition,
define

ηλ := NSλ−1,1
(
T̃wλ

)
and
bα := NSn,Sα (ηα).
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[13,
For any multipartitionθ with derived compositionλ, we defineηθ := ηλ.
As C(n) is the Coxeter class ofSn, we callη(n) the Coxeter class element ofHn. Simi-

larly, ηλ is the Coxeter class element ofHλ.

Proposition 4.2. If α andβ are conjugate compositions, thenbα = bβ .

Proof. Since any pair of conjugate compositions can be obtained from one an
via a sequence of exchanges of adjacent components, it suffices to consider tw
jugate compositions which differ by a single adjacent pair. That is, we may as
α = (λ1, . . . , λk, λk+1, . . . , λr) andβ = (λ1, . . . , λk+1, λk, . . . , λr ). Then

bα = NSn,Sα (ηα) = NSn,S(λ1,...,λk+λk+1,...,λr )

(
NS(λ1,...,λk+λk+1,...,λr ),Sα (ηα)

)
,

with

NS(λ1,...,λk+λk+1,...,λr ),Sα (ηα)

= η(λ1,...,λk−1)NSλk+λk+1,S(λk ,λk+1)
(η(λk,λk+1))η(λk+2,...,λr ).

So to showbα = bβ it suffices to show

NSλk+λk+1,S(λk ,λk+1)
(η(λk,λk+1)) = NSλk+λk+1,S(λk+1,λk)

(η(λk+1,λk)). (4.1)

These norms are both central inHλk+λk+1 by [13, Proposition 2.13], and they are images
each other under the algebra automorphism ofHλk+λk+1 defined by reflecting the Dynki
diagram about its midpoint. This automorphism fixes central elements and hence
holds, proving the lemma.�

Note that if α and β are conjugate compositions ofn, there existsx ∈ Sn such that
Sx

α = Sβ . Therefore, we writeαx = β in this situation. As before, for any multipartitionθ
of n with derived compositionλ of n, we defineθx := λx .

Theorem 4.3 [13]. Letλ � n.

(1) ηλ ∈ Z(Hλ).
(2) Every term with non-zero coefficient in the elementη(n) contains every simple reflec

tion in its reduced form.
(3) η(n) contains terms of lengthn−1 and greater, and specializes onξ = 0 to the Coxeter

class sum inZSn.

Proof. Part (1) is [13, Lemma (3.23)(3)]. Part (2) is [13, Lemma (3.14)]. Part (3) is
Corollary (3.15) and Lemma (3.23)(4)].�
Theorem 4.4 [13]. Letλ � n.
(1) (Transitivity) If Sµ � Sλ thenNSn,Sµ(h) = NSn,Sλ(NSλ,Sµ(h)).
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(2) If h ∈ Z(Hλ) thenNSn,Sλ(h) ∈ Z(Hn).
(3) The setB = {bα | α � n} is a Q[ξ ]-basis forZ(H).

Proof. Part (1) is [13, Lemma (2.12)]. Part (2) is [13, Proposition (2.13)]. Part (3) is
Theorem (3.33)]. �

Note that the setB in Theorem 4.4(3) is indexed by partitions ofn (not compositions)
See Proposition 4.2.

Theorem 4.5 [13, (2.30)]. Let λ,µ � n. Let Sλ and Sµ be parabolic subgroups ofSn. If
b ∈ ZH(Hλ) then

NSn,Sλ(b) =
∑

d∈Dλµ

NSµ,Sd
λ∩Sµ

(
T̃d−1bT̃d

)
.

Proposition 4.6 [13, (2.32)]. Letλ andµ be compositions satisfying|λ| + |µ| = n, and let
λ′ � λ, µ′ � µ. Letx ∈ Sλ′ andy ∈ Sµ′ . Then

NSλ×Sµ,Sλ′×Sµ′
(
T̃xy

) = NSλ,Sλ′
(
T̃x

)
NSµ,Sµ′

(
T̃y

)
.

Proposition 4.7 [13, (3.29)]. For α � n, we have

bα|ξ=0 = [
NSn(Sα) : Sα

]
Cα.

4.2. The minimal basis

The minimal basis is the analogue of the class sum basis for the centre of the
algebra. Its existence was shown in [9], and it was explicitly described in [5].

Theorem 4.8 [9]. There exists a set of elements{Γλ | λ � n} ⊆ Z(H) characterized by the
properties

(1) Γλ|ξ=0 = ∑
w∈Cλ

T̃w, and

(2) Γλ − ∑
w∈Cλ

T̃w contains no shortest elements of any conjugacy class.

These elements form aZ[ξ ]-basis forZ(H).

An element inH+ is said to beprimitive if, when written as a linear combination
{T̃w | w ∈ Sn}, its coefficients have no common factors overZ[ξ ]. The main result of [5] is
the following (using the partial order introduced in Section 1.3):

Theorem 4.9 [5]. The set{Γλ | λ � n} is the set of primitive minimal elements ofZ(H)+.
Also we have:
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Lemma 4.10.

(1) Γ(n) = η(n).
(2) If rT̃wλ � h ∈ Z(H)+ thenrΓλ � h.

Proof. (1) is immediate from Theorem 4.3(3) and the characterization of Theorem
Part (2) is [5, Corollary 4.6]. �

5. An inner product on the Hecke algebra

The standard trace functionτ on H is defined byτ(T̃w) = 1 if w = 1 and 0 oth-
erwise. A generalization of this trace was defined in [7] as follows. Fix an ele
h = ∑

w∈Sn
rwT̃w ∈ Z(H), with rw ∈ Z[ξ ]. For w ∈ Sn, seth(T̃w) := rw, and extend lin-

early to all ofH. If h = T̃1 then this is simplyτ . In this section we introduce a more flexib
alternative formulation of this map as an inner product.

Define a map〈,〉 :H×H → Z[ξ ] by setting

〈 ∑
w∈Sn

rwT̃w,
∑
w∈Sn

r ′
wT̃w

〉
=

∑
w∈Sn

rwr ′
w. (5.1)

If h ∈ Z(H), then (5.1) defines the maph, since〈h, T̃w〉 gives the coefficient of̃Tw in h.
This map and Proposition 5.1 were developed during discussions between the first
and Leonard Scott in 1999.

Proposition 5.1. Let u,v,w ∈ Sn. The map defined in(5.1) is an inner product onH
satisfying

〈
T̃uT̃vT̃u−1, T̃w

〉 = 〈
T̃v, T̃u−1T̃wT̃u

〉
. (5.2)

Proof. The properties of an inner product are easily verified from the definition. We p
(5.2) by induction on the length ofu.

If �(u) = 1, then we may setu = s ∈ S, and reduce the problem to consideringv and
w in the same〈s〉–〈s〉 double coset ofSn (if they are in different double cosets then bo
sides of (5.2) will be zero and the statement holds). Further, ifv = w andu = s then the
statement holds by the symmetry of the inner product. So to prove the result for�(u) = 1
we need to check the cases wherev �= w in the same〈s〉–〈s〉 double coset.

There are two cases for such a double coset〈s〉d〈s〉 in the symmetric group: eithe
ds = sd or ds �= sd . If ds = sd then the double coset consists of only{d, ds} and there is
just one case to check:

〈
T̃d , T̃s T̃ds T̃s

〉 = 〈
T̃d , T̃s

(
T̃d + ξ T̃ds

)〉 = 〈
T̃d , T̃sd + ξ T̃d + ξ2T̃ds

〉
〈 〉 〈 〉
= ξ = T̃d + ξ T̃ds, T̃ds = T̃s T̃d T̃s , T̃ds .
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Whends �= sd the double coset has four elements{d, ds, sd, sds}, and so there are
(4
2

) = 6
cases:

〈
T̃d , T̃s T̃ds T̃s

〉 = 〈
T̃d , T̃sd + ξ T̃sds

〉 = 0= 〈
T̃sds, T̃ds

〉 = 〈
T̃s T̃d T̃s , T̃ds

〉
,〈

T̃d , T̃s T̃sds T̃s

〉 = 〈
T̃d , T̃d + ξ T̃ds + ξ T̃sd + ξ2T̃sds

〉 = 1= 〈
T̃s T̃d T̃s , T̃sds

〉
,〈

T̃ds , T̃s T̃sd T̃s

〉 = 〈
T̃ds , T̃ds + ξ T̃sds

〉 = 1= 〈
T̃s T̃ds T̃s , T̃sd

〉
,〈

T̃ds, T̃s T̃sds T̃s

〉 = ξ = 〈
T̃s T̃ds T̃s , T̃sds

〉
.

The cases

〈
T̃d , T̃s T̃sd T̃s

〉 = 〈
T̃s T̃d T̃s , T̃sd

〉
and

〈
T̃sd , T̃s T̃sds T̃s

〉 = 〈
T̃s T̃sd T̃s , T̃sds

〉
are symmetric to cases listed above.

Now letu = u1s for someu1 ∈ Sn ands ∈ S with �(u1s) = �(u1) + 1. We have

〈
T̃uT̃vT̃u−1, T̃w

〉
= 〈

T̃u1

(
T̃s T̃vT̃s

)
T̃

u−1
1

, T̃w

〉
= 〈

T̃s T̃vT̃s , T̃u−1
1

T̃wT̃u1

〉
(by linearity of the inner product, and by induction)

= 〈
T̃v, T̃s

(
T̃

u−1
1

T̃wT̃u1

)
T̃s

〉
(for the same reasons)

= 〈
T̃v, T̃

−1
u T̃wT̃u

〉
,

which completes the proof.�
Corollary 5.2. Letλ,µ � n. Then

〈
NSn,1

(
T̃wλ

)
, T̃wµ

〉 = 〈
NSn,1

(
T̃wµ

)
, T̃wλ

〉
.

Proof. Immediate from 5.1, the symmetry of the inner product, and the fact that the
from the identity sums over the entire group.�

The following lemma was stated originally in terms of the functionh for a fixedh ∈
Z(H). The statement below is a direct translation of that result.

Lemma 5.3 [7, Lemma (3.5)]. If h ∈ Z(H) then〈h, T̃wT̃v〉 = 〈h, T̃vT̃w〉.

A key property of the inner product in our context is the following:

Lemma 5.4. Letλ � n. The coefficient ofΓλ in h ∈ Z(H) is 〈h, T̃wλ〉.
Proof. Immediate from Lemma 4.10(2).�



A. Francis, L. Jones / Journal of Algebra 289 (2005) 42–69 57

class
7.4.

ss
(ii)
ent of

nt by

ct to
6. The norm of the identity in terms of the class elements

The goal of this section is to prove Theorem 6.3, which gives the coefficient of a
element in the norm of the identity. This result is required for the proof of Theorem
Eventually, Theorem 6.3 is subsumed in the statement of Theorem 9.2.

Lemma 6.1. For 1� i � n − 1,

〈
Γ(n), T̃s1s2...snsi ...s1

〉 = ξ
〈
Γ(n), T̃s1s2...snsi−1...s1

〉
.

Proof. Note thats1s2 . . . snsi−1 . . . s1 ands1s2 . . . snsi . . . s2 are in the same conjugacy cla
and are conjugate by somex ∈ Sn satisfying the Geck–Pfeiffer property II (Theorem 1.1
of [8]), and so the coefficients of their corresponding elements in any central elem
the Hecke algebra are equal (using Lemma 5.3). In particular,〈Γ(n), T̃s1s2...snsi−1...s1〉 =
〈Γ(n), T̃s1s2...snsi ...s2〉. Using Lemma 5.3 again, we have that

〈
Γ(n), T̃s1s2...snsi ...s1

〉
= 〈

Γ(n), T̃s1T̃s1s2...snsi ...s2

〉
= 〈

Γ(n),
(
T̃1 + ξ T̃s1

)
T̃s2...snsi ...s2

〉
= 〈

Γ(n), T̃s2...snsi ...s2 + ξ T̃s1s2...snsi ...s2

〉
= 〈

Γ(n), ξ T̃s1s2...snsi ...s2

〉
(by linearity, Theorem 4.3(2) and Lemma 4.10(1))

= 〈
Γ(n), ξ T̃s1s2...snsi−1...s1

〉
,

which proves the lemma.�
Lemma 6.2. For n � 2, the coefficient of̃Ts1s2...sn...s2s1 in Γ(n) is ξn−2.

Proof. This follows from repeated application of Lemma 6.1.�
Theorem 6.3. The coefficient ofΓλ in NSn,1(T̃1) is [Sn : Sλ]ξ lλ . Equivalently,

〈
NSn,1

(
T̃1

)
, T̃wλ

〉 = [Sn : Sλ]ξ lλ

wherewλ is as defined in Section1.2.

Proof. Firstly note that the two statements in the theorem are in fact equivale
Lemma 5.4.

Secondly note that the symmetry of the norm from the trivial subgroup with respe
the inner product (Corollary 5.2) means that

〈 ( ) 〉 〈 ( ) 〉

NSn,1 T̃1 , T̃wλ = NSn,1 T̃wλ , T̃1 .
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Thus the problem reduces to identifying the coefficient ofT̃1 in the norm ofT̃wλ from the
trivial subgroup toSn.

The transitivity of the norm implies

NSn,1
(
T̃wλ

) = NSn,Sλ

(
NSλ,Sλ−1

(
NSλ−1,1

(
T̃wλ

)))
= NSn,Sλ

(
NSλ,Sλ−1(ηλ)

)
= NSn,Sλ

(
ηλNSλ,Sλ−1

(
T̃1

))
. (6.1)

The result therefore depends on finding the coefficient ofT̃1 in expression (6.1). Now (6.1
is a linear combination of terms of the form̃Td−1T̃wT̃d whered is a distinguished righ
coset representative ofSλ in Sn, and whereT̃w occurs inηλNSλ,Sλ−1(T̃1) (and is therefore
an element ofHλ). Sinced is a coset representative,T̃1 occurs inT̃d−1T̃wT̃d only if w = 1
(by Theorem 3.2).

Similarly, by Theorem 3.2, it is straightforward to see thatT̃1 occurs inηλNSλ,Sλ−1(T̃1)

only whenT̃w−1 occurs inNSλ,Sλ−1(T̃1) for someT̃w occurring inηλ.
The normNSλ,Sλ−1(T̃1) splits into commuting factors along the components ofλ. That

is, if λ = (λ1, . . . , λr ) then

NSλ,Sλ−1

(
T̃1

) =
r∏

i=1

NSλi
,Sλi−1

(
T̃1

)
. (6.2)

The non-trivial right coset representatives of eachSλi−1 in Sλi
are of the formsλ1+···+λi−1−1

. . . sλ1+···+λi−1+λi+j for 1 � j � λi − 1. Thus each factor in (6.2) is a sum of products
the form

T̃sx+j ...sx+λi−1T̃sx+λi−1...sx+j
(6.3)

wherex = λ1+· · ·+λi−1. By Lemma 3.4, each non-identity term in the expansion of (
is of the formξ T̃w wherew is a transposition. Thus the non-identity terms inNSλ,Sλ−1(T̃1)

are products of terms of the formξ T̃w wherew is a transposition inSλ. In addition, ifw
is the longest transposition inSλ, thenξ t is the coefficient ofT̃w wheret = |{λi � 2}|, by
(6.2).

Therefore,ηλNSλ,Sλ−1(T̃1) contains T̃1 only when ηλ contains a transposition. B
Lemma 4.3(2),ηλ contains only the longest transposition inSλ, and its coefficient by
Lemma 6.2 is

∏t
i=1 ξλi−2 = ξλ1+···+λt−2t . Hence, the coefficient of̃T1 in ηλNSλ,Sλ−1(T̃1)

is ξλ1+···+λt−2t ξ t = ξ lλ .
So T̃1 occurs inNSn,1(T̃wλ) for each coset representative ofSλ in Sn. The statemen
follows. �
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7. A partial order on the norm basis and the coefficient of the Coxeter class

In this section we prove that the elements of the norm basis ordered by refinem
partitions are also ordered by the Hecke algebra order defined in Section 1.3. Wh
result might be of independent interest, our chief use for this fact in the present pap
obtain explicitly the coefficient of the Coxeter class element in a given norm basis ele
(see Theorem 7.4).

Recall that the setB := {bα | α � n} is theQ[ξ ]-basis for the centreZ(H) defined in
Section 4.1.

Lemma 7.1. For any integersn andk with n − k � k < n, ξb(n) < b(k,n−k).

Proof. Using the fact that the double coset representativedn−k as defined in Section 2 i
also a right coset representative ofS(k,n−k) in Sn, we have

b(k,n−k) = NSn,S(k,n−k)
(η(k,n−k))

� T̃dn−k
T̃s1...sk−1sk+1...sn−1T̃dn−k

= T̃s1...sk−1sk+1...sn−1T̃
2
dn−k

(sincedn−k commutes withs1 . . . sk−1sk+1 . . . sn−1)

> T̃s1...sk−1sk+1...sn−1

(
ξ T̃sk

)
(sinceξ T̃sk � T̃ 2

dn−k
)

= ξ T̃s1...sk−1sk+1...sn−1T̃sk .

Sinces1 . . . sk−1sk+1 . . . sn−1sk is a minimal element of the Coxeter classC(n), and since
b(k,n−k) ∈ Z(H)+ [5, Proposition (5.3)(ii)], it follows thatξΓ(n) � b(k,n−k) by [5, Corol-
lary (4.6)]. Sinceb(n) = Γ(n), and sinceT̃w(k,n−k)

occurs inb(k,n−k) but not in b(n), the
lemma follows. �
Theorem 7.2. Letλ,µ � n. If λ < µ in the refinement order, thenξ lµ−lλbµ < bλ.

Proof. We first prove the theorem whenλ = (λ1, . . . , λr ) and µ = (λ1, . . . , λr−2,

λr−1 + λr). In this case we have

bλ = NSn,Sλ(ηλ)

= NSn,Sµ

(
NSµ,Sλ(ηλ)

)
= NSn,Sµ

((
r−2∏
i=1

NSλi
,Sλi

(ηλi
)

)
NSλr−1+λr ,S(λr−1,λr )

(η(λr−1,λr ))

)

> NSn,Sµ

((
r−2∏
i=1

NSλi
,Sλi

(ηλi
)

)
ξNSλr−1+λr ,Sλr−1+λr

(η(λr−1+λr ))

)
(by Lemma 7.1)

( )
= ξNSn,Sµ NSµ,Sµ(ηµ) = ξNSn,Sµ(ηµ) = ξbµ.
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Similar arguments demonstrate the validity of the theorem whenµ = (λ1, λ2, . . . , λi−1,

λi + λi+1, λi+2, . . . , λr ) with 1 � i � r − 2. The extension to arbitraryλ < µ is then
immediate. �
Corollary 7.3. Write bα = ∑

λ�n rα,λΓλ for α � n and rα,λ ∈ Z[ξ ]. Thenα < β implies
ξrβ,λ � rα,λ for anyλ � n.

Proof. The partial order of Theorem 7.2 implies that for an arbitrary basis elemenT̃w

of H, if λ < µ then the coefficientsrw,λ andrw,µ of T̃w in bλ andbµ respectively satisfy
the relationξrw,µ � rw,λ. In particular, this is the case whenw is a shortest element of
conjugacy class. It follows that for any sequence of partitions totally ordered by refine
between(1n) and(n), the coefficients of any given class element also satisfy the inequ
by Lemma 5.4. �
Theorem 7.4. The coefficient of the Coxeter class elementΓ(n) in bα is ξn−1−lα .

Proof. We have from Lemma 4.10(1) that the coefficient ofΓ(n) in b(n) is 1. We also have
that the coefficient ofΓ(n) in b(1n) is ξn−1 by Theorem 6.3. Clearly both of these coe
cients satisfy the theorem statement. Given any sequence of partitionsαi totally ordered
by refinement between(1n) and(n):(

1n
) = α0 < · · · < αn−1 = (n),

Corollary 7.3 gives the following relations, whereri is the coefficient ofΓ(n) in bαi
:

ξn−1 = r0 � ξr1 � · · · � ξ iri � · · · � ξn−1rn−1 = ξn−1.

It follows that all the terms in the above order are equal, andξ iri = ξn−1, so thatri =
ξn−1−i . Since length increases by one with each step of the refinement order,i = lαi

. The
result follows since every partition is part of such a full sequence of partitions bet
(1n) and(n) ordered by refinement with length increasing by one.�
Remark. Applying the map fromH → Hq (as described in the Remark in Section 1.3
the expansion ofbα , the coefficient of the Coxeter class element in Theorem 7.4 in te
of theZ[q, q−1]-basis forHq is (q−1(q − 1))n−1−lα . Note that under the mapH → Hq ,
Γ(n) �→ q−(n−1)/2Γ(n),q andbα �→ q−lα/2bα,q , whereΓ(n),q andbα,q are the correspondin
Hq versions. This is an example of a result whose statement overZ[q, q−1] is independen
of the partial order onH+—which makes sense only overZ[ξ ]—but whose proof is mad
possible by treating the Hecke algebra as aZ[ξ ]-module and using the partial order.

8. Projections of norms onto maximal parabolic subalgebras

The main result of this section is a projection formula forbα (a norm basis element) on
a maximal parabolic subgroup. Results in this section are from [12] but have not app

in the literature.
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Let B = {bα | α � n} (see Section 4). Ifθ = (θ1, . . . , θt ) is a multipartition ofn, write
ηθ := ηθ1 . . . ηθt .

Forλ � n, define the projectionπλ :Hn → Hλ by setting

πλ

(
T̃w

) =
{

T̃w, if w ∈ Sλ,

0, otherwise,

and extending toHn linearly.

Theorem 8.1 [12]. Letbα ∈ B and writeπ := π(k,n−k). Then

π(bα) =
∑

(µ,ν)∈Λ(k,n−k)(α)

zµ,νNS(k,n−k),S(µ,ν)
(η(µ,ν)), (8.1)

with thezµ,ν non-negative integers.

Proof. The proof is by induction onn. The theorem is easily verified forn = 2, so assume
it in all cases less thann.

For (µ, ν) ∈ Λ(k,n−k)(α) we have

bα = NSn,Sα (ηα)

= NSn,S(k,n−k)

(
NS(k,n−k),S(µ,ν)

(η(µ,ν))
)

(by Theorem 4.4 and Proposition 4.2)

=
n−k∑
m=0

NS(k,n−k),Pm

(
T̃dmNS(k,n−k),S(µ,ν)

(η(µ,ν))T̃dm

)
(by Theorem 4.5)

=
n−k∑
m=0

NS(k,n−k),Pm

(
T̃dmNSk,Sµ(ηµ)NSn−k,Sν (ην)T̃dm

)
(by Proposition 4.6).

Consider the general term in this last sum. For this term, writeNSk,Sµ(ηµ) as
Ak + Bk where Ak is the projection ofNSk,Sµ(ηµ) onto H(k−m,m) in Hk . Similarly,
write NSn−k,Sν (ην) asAn−k + Bn−k whereAn−k is the projection ofNSn−k,Sν (ην) onto
H(m,n−k−m) in Hn−k . Thus

NSk,Sµ(ηµ)NSn−k,Sν (ην) = AkAn−k + AkBn−k + BkAn−k + BkBn−k.

By induction,

Ak =
∑

(µ1,µ2)∈Λ(k−m,m)(µ)

zµ1,µ2NS(k−m,m),S(µ1,µ2)
(η(µ1,µ2)),

and

An−k =
∑

zν1,ν2NS(m,n−k−m),S(ν ,ν )
(η(ν1,ν2)),
(ν1,ν2)∈Λ(m,n−k−m)(ν)
1 2
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with thezµ1,µ2 andzν1,ν2 non-negative integers. We abbreviate the(k − m,m,m,n − k)-
multipartition(µ1,µ2, ν1, ν2) of α by ᾱ. Then

AkAn−k =
∑

(µ1,µ2)∈Λ(k−m,m)(µ)

(ν1,ν2)∈Λ(m,n−k−m)(ν)

zµ1,µ2zν1,ν2NPm,Sᾱ
(ηᾱ) (8.2)

by splicing the norms back together utilizing Proposition 4.6.
Each of the terms in (8.2) is then multiplied byT̃dm on the left and right. Write

NPm,Sᾱ
(ηᾱ) =

∑
r∈R

T̃r−1ηᾱT̃r

whereR is the set of distinguished right coset representatives forSᾱ in Pm.
Becausedm is a distinguished double coset representative ofS(k,n−k) in Sn, we have

�(rdm) = �(dmr−1) = �(dm) + �(r) for any r ∈ R. Then, sincer̂ = dmrdm is a distin-
guished right coset representative forS

dm

ᾱ in Pm (Corollary 2.5), it follows that:

T̃dm T̃r−1ηᾱT̃r T̃dm = T̃dmr−1ηᾱT̃rdm = T̃r̂−1dm
ηᾱT̃dmr̂ = T̃r̂−1T̃dmηᾱT̃dmT̃r̂ .

Sinceηᾱ ∈ Hᾱ andSᾱ � Pm, Corollary 3.6 implies that

T̃dmηᾱT̃dm = ηᾱdm +
∑
w∈Sn

fwT̃w, where #(w) � 1 if fw �= 0.

Since #(r̂) = 0, we have from Corollary 3.3(2) that

T̃r̂−1T̃dmηᾱT̃dmT̃r̂ = T̃r̂−1ηᾱdm T̃r̂ +
∑
w∈Sn

gwT̃w, where #(w) � 1 if gw �= 0,

and so,

T̃dmNPm,Sᾱ
(ηᾱ)T̃dm = NPm,S

ᾱdm
(ηᾱdm ) +

∑
w∈Sn

hwT̃w, where #(w) � 1 if hw �= 0.

Thus, applying Theorem 4.4(1) toH(k,n−k),

π
(
NS(k,n−k),Pm

(
T̃dmAkAn−kT̃dm

))
=

∑
(µ1,µ2)∈Λ(k−m,m)(µ)

(ν1,ν2)∈Λ(m,n−k−m)(ν)

zµ1,µ2zν1,ν2NS(k,n−k),S
dm
ᾱ

(ηᾱdm ). (8.3)
Collecting common terms and re-indexing, (8.3) may be written as
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ins
π
(
NS(k,n−k),Pm

(
T̃dmAkAn−kT̃dm

))
=

∑
(µ,ν)∈Λ(k,n−k)(α)

zµ,νNS(k,n−k),S(µ,ν)
(η(µ,ν)),

with thezµ,ν non-negative integers.
We now examine the product̃TdmBkBn−kT̃dm . SinceBk projects to zero onH(k−m,m),

every non-zero term ofBk containssk−m. Similarly, every non-zero term ofBn−k contains
sk+m. Let T̃wk

be a non-zero term inBk and T̃wn−k
a non-zero term inBn−k , assuming

for simplicity that the coefficients are one. Nowwkwn−k ∈ S(k,n−k) with �(wkwn−k) =
�(wk) + �(wn−k), and sincedm is a distinguished double coset representative ofS(k,n−k)

in Sn we have

T̃dm T̃wk
T̃wn−k

T̃dm = T̃dm T̃wkwn−kdm. (8.4)

If dmwkwn−kdm ∈ S(k,n−k), thendmwkwn−kdm ∈ Pm (by definition ofPm), which implies
that wkwn−k ∈ P

dm
m = Pm. This is a contradiction sincewk containssk−m /∈ Pm or since

wn−k containssk+m /∈ Pm. Thus, Corollary 3.3(1) implies that every term in (8.4) conta
sk since #(dmwkwn−kdm) > 0. Hence, every term of̃TdmBkBn−kT̃dm containssk .

Similarly, every term of the products̃TdmBkAn−kT̃dm andT̃dmAkBn−kT̃dm containssk .
Applying Corollary 3.3(2), we conclude that

π
(
NS(k,n−k),Pm

(
T̃dm(BkAn−k + AkBn−k + BkBn−k)T̃dm

)) = 0.

This completes the proof of the theorem.�
Corollary 8.2. For each(µ, ν) ∈ Λ(k,n−k),

zµ,ν = [
NSn(S(µ,ν)) : NS(k,n−k)

(S(µ,ν))
]
.

Proof. We have from Theorem 8.1 that

π(bα) =
∑

(µ,ν)∈Λ(k,n−k)(α)

zµ,νNS(k,n−k),S(µ,ν)
(η(µ,ν)).

By Proposition 4.7, when we specializebα by settingξ = 0 we obtain[NSn(Sα) : Sα]Cα .
When we projectCα via π we get a sum of disjoint subsets ofCα , corresponding to
(k, n − k)-multipartitions(µ, ν) of α. Thus

π(bα)|ξ=0 =
∑

(µ,ν)∈Λ(k,n−k)(α)

[
NSn(S(µ,ν)) : S(µ,ν)

]
C(µ,ν).

On the other hand

[ ]

NS(k,n−k),S(µ,ν)

(η(µ,ν))|ξ=0 = NS(k,n−k)
(S(µ,ν)) : S(µ,ν) C(µ,ν).
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Consequently, for each(µ, ν) ∈ Λ(k,n−k)(α) we have

[
NSn(S(µ,ν)) : S(µ,ν)

] = zµ,ν

[
NS(k,n−k)

(S(µ,ν)) : S(µ,ν)

]
,

and the corollary follows. �

9. Coefficients of class elements in norms

In this section we generalize Theorem 8.1 to arbitrary parabolic subalgebras, a
this generalization to prove Theorem 9.2—our main result—on the coefficients of
elements in norms.

Theorem 9.1. Letλ � n andα � n. Then

πλ(bα) = |Sn|
|Sλ| · |Cα|Sn

∑
θ∈Λλ(α)

|Cθ |SλNSλ,Sθ (ηθ ). (9.1)

Proof. If λ has one component,λ = (n), then there is only one multipartitionθ of shape
λ using the components ofα, namelyθ = (α) itself, and the statement is trivial. Ifλ =
(k, n − k) then we can apply Theorem 8.1 and Corollary 8.2 to obtain

πλ(bα) =
∑

θ∈Λλ(α)

[
NSn(Sθ ) : NSλ(Sθ )

]
NSλ,Sθ (ηθ ).

An elementary calculation gives that

[
NSn(Sθ ) : NSλ(Sθ )

] = |Sn| · |Cθ |Sλ

|Sλ| · |Cα|Sn

,

and the statement for the case in whichλ has two components follows.
Now suppose inductively for some fixedλ = (λ1, . . . , λr ) � n, with r > 2, that (9.1)

holds for all compositions ofn with fewer components thanλ. In particular, we assum
that (9.1) holds forλ′ = (λ1, . . . , λr−2, λ

′
r−1) whereλ′

r−1 = λr−1 + λr .
Write θ ′ = (θ1, . . . , θr−2, θ

′
r−1) ∈ Λλ′(α) with θi � λi for 1 � i � r − 2 andθ ′

r−1 �
λ′

r−1. By our induction hypothesis we have

πλ′(bα) = |Sn|
|Sλ′ | · |Cα|Sn

∑
θ ′∈Λλ′ (α)

|Cθ ′ |Sλ′NSλ′ ,Sθ ′ (ηθ ′)

= |Sn|
|S(λ1,...,λr−2)| · |Sλ′

r−1
| · |Cα|Sn

∑
θ ′∈Λλ′ (α)

(|C(θ1,...,θr−2)|S(λ1,...,λr−2)
· |Cθ ′

r−1
|Sλ′

r−1

)
×NS(λ1,...,λr−2),S(θ1,...,θr−2)
(η(θ1,...,θr−2)) ·NSλ′

r−1
,Sθ ′

r−1
(ηθ ′

r−1
) . (9.2)
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Let πλ′′ be the projection from the algebraHλ′ ontoHλ. Thenπλ′′ acts as the identity
on H(λ1,...,λr−2), and acts on norms inHλ′

r−1
according to Eq. (8.1) and by the inducti

hypothesis according to (9.1).
Thenπλ = πλ′′πλ′ , andπλ′′ acts trivially on all but the last factor in each summand

(9.2), namely

NSλ′
r−1

,Sθ ′
r−1

(ηθ ′
r−1

).

The image of this norm under the projectionπλ′′ to the maximal parabolic subgrou
S(λr−1,λr ) of Sλr−1+λr can thus be decomposed by induction as follows:

πλ′′
(
NSλ′

r−1
,Sθ ′

r−1
(ηθ ′

r−1
)
)

=
|Sλ′

r−1
|

|S(λr−1,λr )| · |Cθ ′
r−1

|Sλ′
r−1

×
∑

(θr−1,θr )∈Λ(λr−1,λr )(θ
′
r−1)

|C(θr−1,θr )|S(λr−1,λr )
·NS(λr−1,λr ),S(θr−1,θr )

(η(θr−1,θr )).

Composingπλ′′ andπλ′ to giveπλ we have (after some initial cancellations):

πλ(bα)

= |Sn|
|S(λ1,...,λr−2)| · |Cα|Sn

×
∑

θ ′∈Λλ′ (α)

|C(θ1,...,θr−2)|S(λ1,...,λr−2)

|S(λr−1,λr )|
·NS(λ1,...,λr−2),S(θ1,...,θr−2)

(η(θ1,...,θr−2))

×
∑

(θr−1,θr )∈Λ(λr−1,λr )(θ
′
r−1)

|C(θr−1,θr )|S(λr−1,λr )
·NS(λr−1,λr ),S(θr−1,θr )

(η(θr−1,θr ))

= |Sn|
|S(λ1,...,λr−2)| · |S(λr−1,λr )| · |Cα|Sn

×
∑

θ∈Λλ(α)

|C(θ1,...,θr−2)|S(λ1,...,λr−2)
· |C(θr−1,θr )|S(λr−1,λr )

×NS(λ1,...,λr−2),S(θ1,...,θr−2)
(η(θ1,...,θr−2)) ·NS(λr−1,λr ),S(θr−1,θr )

(η(θr−1,θr ))

= |Sn|
|Sλ| · |Cα|Sn

∑
θ∈Λλ(α)

|Cθ |Sλ ·NSλ,Sθ (ηθ ),
which completes the proof.�
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Remark. Note that whenλ �= (n), the norms in the summation in the statement of Th
rem 9.1 are only up to a proper subgroupSλ of Sn. Therefore, since these multipartitio
θ ∈ Λλ(α) are not conjugate asλ-multipartitions, Proposition 4.2 does not apply and
norms cannot be pulled out of the summation.

Theorem 9.2. Letbα ∈ B and letΓλ be a class element. Then

bα =
∑
λ�n

(1Sλ)
Sn(wα)ξ lλ−lαΓλ.

Proof. Firstly recall that the coefficient ofΓλ in bα is exactly〈bα, T̃wλ〉 by Lemma 5.4.
The critical observation is that this value is preserved under the projectionπλ(bα) ontoHλ,
so that〈bα, T̃wλ〉 = 〈πλ(bα), T̃wλ〉. By linearity of the inner product we have

〈
bα, T̃wλ

〉 = 〈
πλ(bα), T̃wλ

〉
= |Sn|

|Sλ| · |Cα|Sn

∑
θ∈Λλ(α)

|Cθ |Sλ

〈
NSλ,Sθ (ηθ ), T̃wλ

〉
.

Now regardless of whichθ ∈ Λλ(α) is taken,lθ = lα , and so by applying Theorem 7.4
each component ofSλ, the coefficient of the canonical Coxeter elementT̃wλ is ξ lλ−lα in
each case. Thus〈NSλ,Sθ (ηθ ), T̃wλ〉 = ξ lλ−lα is independent ofθ , and so may be pulled ou
of the summation. Then,

|Sn|
|Sλ| · |Cα|Sn

∑
θ∈Λλ(α)

|Cθ |Sλ = |Sn|
|Cα|Sn

∑
θ∈Λλ(α)

|Cθ |Sλ

|Sλ|

= ∣∣CSn(wα)
∣∣ ∑
θ∈Λλ(α)

1

|CSλ(wθ )|

= (1Sλ)
Sn(wα), (9.3)

which completes the proof.�
Remark. Utilizing the mapH → Hq as described in the remark in Section 1.3, this th
rem can ultimately be translated into a corresponding result overZ[q, q−1] by considering
the analogous normsbα and class elementsΓλ over that ring, and replacing theξ in the
statement of the theorem withq−1(q − 1). See the remark after Theorem 7.4.

Remark. Theorem 9.2 generalizes the result for the norm of the identityb(1n) in Theo-
rem 6.3, effectively making 6.3 redundant. It also includes as a special case Theore
which gives the coefficient of the Coxeter class element inbα .
An immediate generalization is the following:
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Corollary 9.3. Letλ � n andµ � λ. Then

NSλ,Sµ(ηµ) =
∑
θ∈Λλ

(1Sθ )
Sλ(wµ)ξ lθ−lµΓθ .

10. Examples

In this section, we illustrate Theorem 9.2 by explicitly giving norms and class elem
in terms of the standard basis forH whenn = 3; we give tables of coefficients for 3� n � 5
which were obtained using Theorem 9.2; and we demonstrate use of the formula to
a coefficient inS10.

10.1. Expansions for norms and class elements whenn = 3

Explicit expressions for norms and class elements for Hecke algebras of typesS3 and
S4 are listed in [13] (overZ[q, q−1]) and [5] respectively. We reproduce them forn = 3
here:

The norms:

b(1,1,1) = 6T̃1 + 3ξ T̃s1 + 3ξ T̃s2 + ξ2T̃s1s2 + ξ2T̃s2s1 + ξ
(
3+ ξ2)T̃s1s2s1

= 6Γ(1,1,1) + 3ξΓ(2,1) + ξ2Γ(3),

b(2,1) = T̃s1 + T̃s2 + ξ T̃s1s2 + ξ T̃s2s1 + (
1+ ξ2)T̃s1s2s1 = Γ(2,1) + ξΓ(3),

b(3) = T̃s1s2 + T̃s2s1 + ξ T̃s1s2s1 = Γ(3),

where theΓλ are the following class elements:

Γ(1,1,1) = T̃1,

Γ(2,1) = T̃s1 + T̃s2 + T̃s1s2s1,

Γ(3) = T̃s1s2 + T̃s2s1 + ξ T̃s1s2s1.

10.2. Coefficient tables when3� n � 5

In the tables below, the row labelled byα gives the coefficients of the class eleme
in bα . That is, the entry in position(α,λ) gives the coefficient ofΓλ in bα .

n = 3 (13) (2,1) (3)

(13) 6 3ξ ξ2

(2,1) 1 ξ

(3) 1

n = 4 (14) (2,12) (3,1) (22) (4)

(14) 24 12ξ 4ξ2 6ξ2 ξ3

(2,12) 2 2ξ 2ξ ξ2

(3,1) 1 0 ξ

(22) 2 ξ
(4) 1
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-

n = 5 (15) (2,13) (3,12) (22,1) (4,1) (3,2) (5)

(15) 120 60ξ 20ξ2 30ξ2 5ξ3 10ξ3 ξ4

(2,13) 6 6ξ 6ξ 3ξ2 4ξ2 ξ3

(3,12) 2 0 2ξ ξ ξ2

(22,1) 2 ξ 2ξ ξ2

(4,1) 1 0 ξ

(3,2) 2 ξ

(5) 1

10.3. A coefficient inS10

Suppose we want the coefficient ofΓ(5,3,2) in b(3,2,2,1,1,1). Using the form of the coef
ficients in Theorem 9.2 from the left-hand side of Eq. (9.3), this is

|S10|ξ l(5,3,2)−l(3,2,2,1,1,1)

|S(5,3,2)| · |C(3,2,2,1,1,1)|S10

∑
θ∈Λ(5,3,2)((3,2,2,1,1,1))

|Cθ |S(5,3,2)
.

We have

Λ(5,3,2)

(
(3,2,2,1,1,1)

)
= {(

(3,2), (2,1), (1,1)
)
,
(
(3,2), (1,1,1), (2)

)
,
(
(3,1,1), (2,1), (2)

)
,(

(2,2,1), (3), (1,1)
)
,
(
(2,1,1,1), (3), (2)

)}
,

and

|C((3,2),(2,1),(1,1))|S(5,3,2)
= 5 · 4 · 3

3
· 3 · 2

2
= 60,

|C((3,2),(1,1,1),(2))|S(5,3,2)
= 5 · 4 · 3

3
= 20,

|C((3,1,1),(2,1),(2))|S(5,3,2)
= 5 · 4 · 3

3
· 3 · 2

2
= 60,

|C((2,2,1),(3),(1,1))|S(5,3,2)
= (5 · 4)(3 · 2)

2 · 2
· 3 · 2 · 1

3
= 60,

|C((2,1,1,1),(3),(2))|S(5,3,2)
= 5 · 4

2
· 3 · 2 · 1

3
= 20.

So our coefficient is

10!ξ (4+2+1)−(2+1+1)

10·9·8·7·6·5·4 (60+ 20+ 60+ 60+ 20) = 11ξ3.

5!3!2! 3·2·2
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