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Abstract

In 1990, using norms, the second author constructed a basis for the centre of the Hecke algebra of
the symmetric groug,, overQ[£] [Trans. Amer. Math. Soc. 317 (1) (1990) 361-392]. An integral
“minimal” basis was later given by the first author in [J. Algebra 221 (1) (1999) 1-28], following
[M. Geck, R. Rouquier, Centers and simple modules for Iwahori-Hecke algebras, in: Finite Reduc-
tive Groups, Luminy, 1994, Birkhauser, Boston, MA, 1997, pp. 251-272]. In principle one can then
write elements of the norm basis as integral linear combinations of minimal basis elements.

In this paper we find an explicit non-recursive expression for the coefficients appearing in these lin-
ear combinations. These coefficients are expressed in terms of certain permutation chardgters of

In the process of establishing this main theorem, we prove the following items of independent
interest: a result on the projection of the norms onto parabolic subalgebras, the existence of an inner
product on the Hecke algebra with some interesting properties, and the existence of a partial ordering
on the norms.
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0. Introduction

There are now three distinct descriptions of the centre of the lwahori—-Hecke afgebra
of the symmetric grouys,,. It has two nice bases, one consisting of norms @& [13],
and one a “minimal basis” of class elements a%gr] [5,9]. Thirdly, it is now known that
the symmetric functions in Murphy elements are precisely the cenfrémfer Z[£] [10],
and it follows that the elementary symmetric functions in Murphy elements generate the
centre ovelZ[£]. A natural question is then to ask “How are these descriptions related?”
The relationship between the elementary symmetric functions of Murphy elements and the
minimal basis is now known precisely at least in one direction [4], but relationships with
the norm basis have been opaque. Furthermore, the elucidation of the connections between
the norm basis and the other bases is of interest since the norms of [13] are natural central
structures which have been used to define Brauer-type homomorphisms for Hecke algebras
[3,6,12] andg-Schur algebras [2].

The goal of this paper is to describe an explicit relationship between the norm basis
and the minimal basis for the centre of the Hecke algebra of the symmetric §fotipis
relationship is given by an expression for the coefficients of class elements (the minimal
basis) as they appear in the norms. These coefficients are described in terms of the values
of certain permutation characters$y.

Letw and be partitions of:, with w, an element of the conjugacy claSg of S,,. Let
[, andl, be the lengths of the minimal elements in the corresponding conjugacy classes
of S,, and let be the defining indeterminate of the Hecke algebra. (lg})" be the
permutation character ¢, which arises from the induction t8, of the trivial character
on the parabolic subgrouf).. The main result is as follows.

Theorem 9.2. Let b, be an element of the norm basis and I&t be an element of the
minimal basis. Then

bo =y (15)% (wa )" 11y

ibn

A considerable amount of machinery, which involves several results of independent
interest, is developed in the course of obtaining Theorem 9.2.

The preliminary Section 1 introduces most of the basic definitions and notation used
throughout the paper. The reader may wish to skim this section and return for reference as
required later in the paper. Section 2 contains results about double coset representatives of
parabolic subgroups in the symmetric graizpwhich are required for Section 8. A formula
for the square of the Hecke algebra element corresponding to a distinguished double coset
representative is given in Section 3. In Section 4, the main properties of the bases for the
centre are briefly reprised. Section 5 introduces an inner product on the Hecke algebra and
gives some elementary properties. In Section 6, we find the coefficiant wof b, when
« is trivial (Theorem 6.3), while in Section 7 we determine the coefficient of the Coxeter
class elemeniy,) in b, for all « - n (Theorem 7.4). To establish Theorem 7.4, we show
that the basis of norms satisfies a partial order consistent with the refinement order on
partitions (Theorem 7.2). The descriptions of coefficients in Theorems 6.3 and 7.4 are later
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made redundant by Theorem 9.2, but are necessary for its proof. Section 8 gives the main
projection theorem (Theorem 8.1), which uses a Mackey-type decomposition to give a rule

for projecting norms onto a maximal parabolic subalgebra. This result has been used to
study the Brauer homomorphism in [3]. In Section 9, Theorem 8.1 is generalized to a rule

for projecting onto arbitrary parabolic subalgebras (Theorem 9.1), and the main theorem

guoted above is deduced. Finally, the main result is demonstrated in Section 10 with some
examples.

1. Definitions and notation
Throughout we tak& to mean the set of non-negative integers.
1.1. Compositions, partitions and multipartitions

A composition is a finite ordered set of positive integersilE (g, ..., ), thei;
are called theomponentsf A. If 1 is a composition we writgh| = Y ;_; A;. If [A| =n we
saya is acomposition of:, and we writel F n. Two compositions are said to benjugate
if they have the same components.

If A=(\1,..., ;) Fnthenwe define. — 1 to be the composition af obtained fromi
by replacing each; > 1 by the juxtaposed ordered pair of positive integers- 1 and 1.
For example, il = (3,4,1,7) thenA —1=(2,1,3,1,1,6,1).

If » andu are compositions of and eitherh = u or A can be obtained fromx by
adding together adjacent componentg.pfve sayu is arefinemenbdf A and writeu < A.

A patrtition of n is a composition whose components are weakly decreasing from left to
right. If A is a partition ofn we write A - n.

A multipartition is a finite ordered set of partitions. Amultipartition of n for A =
(A, ..., Ar) Enis an ordered set of partitiorts= (64, ..., 6,) with 9; - A; for eachi =
1,...,r. Note that from any multipartitio® of n we can derive a unique compositian
of n by removing the internal parentheses. We call this unique compositittre derived
compositiorof the multipartitiond. For exampled = ((4,1), (3,2, 1), (2, 1)) has derived
compositionh = (4,1,3,2,1,2,1) of n = 14.

By thecomponentsf ai-multipartition ofn, we mean the components of its constituent
partitions. Ifo I n, then ar-multipartition of ¢ is aA-multipartition ofn» whose compo-
nents are the componentsaafLet A, be the set of-multipartitions ofn, and letA; («) be
the set ofA-multipartitions ofa. For example, &3, 5, 2)-multipartition of (3,2,2,1,1, 1)
is((2,1),(3,1,1),(2).

Note that for many choices af and« there are nd.-multipartitions ofe; for instance
there are n@3, 2)-multipartitions of(4, 1).

1.2. The symmetric group
Let S, be the symmetric group onletters with generating set of simple reflections

S:={si=G i+D|1<i<n-1}.
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We use both the; notation and the cycle notation as expedient. We adopt the convention
thatSo = S1 = {(1)}.

We say an expression fav € S, is reducedif there is no way to writew as a word
in fewer generators. In this case we say the lergth) of w is this minimal number of
generators. Symmetric groups act on sets of vectors in Euclidean space knovot as
systemsOne can define the conceptspadsitiveand negativeroots which in turn can be
used to describe the length of an elemengfin particular if@* and®~ :={-v|v e
& T} are the sets of positive and negative roots respectively, &hen= |w(®*) N &~|.
A set of positive roots for the root system §f is the se@t ={¢; —¢; | 1<i < j <n}
where{e; | 1 <i < n}is the set of standard basis vectorsIior.

Fori = (A1,..., Ax) En define

SAZ=S)L1XSAZX'-'XSAk,

where fori; > 1, S, is the subgroup of5, generated by the séby, .45, ;+1,---,
Siq+-42—1}, and fora; =1, S, is the trivial subgroup. Such a subgrofip is called a
parabolicsubgroup of5,,. Note thatS,, < S if and only if u < A (that is,u is a refinement
of A).

If 6 = (61, ..., 6,)is amultipartition (the; are partitions), then sép := Sp, x - -- x S,

The unique element of & —S,, double coset 0§, of minimal length is called distin-
guisheddouble coset representative (such elements are well known to be unique—see [1]).
Let D,,, denote the set of distinguisheg-S,, double coset representativessi

The conjugacy classes 8f are indexed by partitions of n. Write C;, for the conjugacy
class consisting of elements §f of cycle typex. Write C;, for the sum of elements in the
conjugacy clasg’; . If A = (A1, ..., A,) then set o

wy) = (Sl e Skl—l) (S)LH_]_ e S)Ll-sz—l) e (S)tl+“'+)\r—1+l .. 'S)»1+'“+)»r—1)

where we take each empty sequence; sf(when ; = 1) to be the identity. Themw, is a
Coxeter elemenf the subgrougs,, and also a minimal length element of the conjugacy
classC, in S,,.

In S, for A E n, the conjugacy classes are indexed by thetsatf A-multipartitions ofn.
In particular, inSy,,—x), the classes are indexed @y n — k)-multipartitions ofn. If A = n
andé € A,, thenCy denotes the conjugacy classSp corresponding to the composition
of n derived fromé.

As usual,|Cyls, denotes the size of the conjugacy clagsin S,.

Let!, be the length of a shortest element of the conjugacy dasthat is,l; = £(w;,).

Forw € S, and fixedk € {1, ...,n — 1}, define #w) to be the minimal number of times
the generatat;, = (k k+ 1) must appear in any reduced expressiondotJnless otherwise
noted,k is assumed to be fixed throughout this paper.&ar S, and/ C {1,...,n}, we
write w.I for the image of the action ab on the sefl.

The Bruhat orderon S, is defined as follows. Fov, w € S,,, we sayv < w if there
exists a reduced expressiomoivhich is a subword of a reduced expressiomfor

For any groupsH < G, we use the standard notatiély; (H) and Ng (H) to indicate
the centralizerandnormalizerrespectively, of in G.
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1.3. The Hecke algebra

In this paper we use the normalized version of the generators for the Hecke algebra,
giving us an algebra over the riri[£], whereé is an indeterminate. The exact connec-
tion between this definition and the standard definition &fer/2, g—1/2] is given in the
remark below.

The lwahori-Hecke algebr# := H,, of S, is the associativé[&]-algebra generated
by the se{{T} | s € S} with identity 71 and subject to the relations

Tsj:frjf? if |i_j|>27

i

Si
T ToaTs, = Ton T Ty fOr1<i<n—2,

T2=Ti+&T, forl<i<n-—1

If w=s;,...s;, is areduced expression far, then we writeT,, := Ts,-l ... T, . ThenH is
a freeZ[&]-module with basi§T,, | w € S,.}.

When specialization ot{ to £ = 0 is used in this paper it will be assumed that the
specialization is to the group algeldfs,,. If i € H we write i|¢—o for the specialization
of haté =0.

If A n, we let’H, denote the parabolic subalgebra’f generated by7; | s € S'},
wheresS’ is the subset af consisting of the simple reflections which generate the parabolic
subgroups,. For any multipartitiond of » with derived compositiork of n, we define
He = H)L.

Remark. SetT, := ¢~ Y27, fors € S andé = ¢%/2— ¢~/2. ThenH is a subalgebra df,

the more standard Hecke algebra generatefibys € S} overZ[gY/?, ¢4=1/2]. A princi-

pal reason for defining the algebra with normalized generators is that doing sargives

a natural positivity and an associated partial order on the positive cone. Many results on
the centre ofH have more natural statements and proofs when the algebra is defined in
this way. The main results of this paper are all readily translated back to statements over
Z[ql/z’ q—l/Z].

LetH" =3 s, N[£]T,,. Fora, b € Ht we saya < b whenb —a € H™. If in addition
b — a # 0 then we writea < b. The partial order restricts to the positive cone of the base
ring, N[£] = Z[£]T. Fora, b € N[£], we saya < b whenb — a € N[£], anda < b if in
additionb — a # 0.

If A is a subalgebra of{, then thecentralizer ofA in H, denotedZ(A), is the set
of elements irH which commute with every element d@f. Thecentreof H is Z(H) :=
Zn(H). SetZ(H)* :=Z(H) NHT.

We say that an elemefit, in H,, containsa particular generatore S whens < w in
the Bruhat order. We also say (with some abuse of language} thazwesn rwTw € Hy
containsTy,, or thatT,, occursin A, if r,, # 0.
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2. Double cosets of maximal parabalic subgroups

This section and the next contain a number of results needed for later sections, most of
which appear in [12] but not, as far as we can see, in the available literature.

Recall thatk € {1,...,n — 1} is fixed. Also, throughout this section we I8 =
min{k,n — k} andi = (k,n — k) En. For0O<m < M andw € S,,, set

dpi=G(kk+mk—1k+m—-1 ... (k+1—mk+1),
D:={d, |0<m < M},
lwll := |wAL,....k}N{k+1,....n}

Proposition 2.1.

(1) The elements,, satisfy the following
@) dyt = dm,
(b) £(dw) =m?,
(c) #dpy) =m = |dnll.

(2) D ="D;,.

Proof. Part (1)(a) is obvious sina#, is a product of disjoint transpositions.

The results of (1)(b) and (1)(c) are trivial foar = 0 andm = 1, so we assume
m > 2. Using a standard root system argument (see for example [1]), observé,that
takes the sefer—; — exy14+; 1 0< i, j <m — 1} of m? positive roots to negative roots,
which implies thatt(d,,) > m2. Sinced,, = dpu_1(Sk—m+1- .. Sk—1Sk+m - - - Sk), We have
that £(d,,) < £(dn—1) + 2m — 1. By induction, £(d,,_1) = (m — 1)%. Hence{(d,,) <
(m — 1)? + 2m — 1 =m?, giving £(d,,) = m?, which proves part (1)(b).

As above, writed,,, = d,,—1ws; Where #w) = 0. By induction assume that(#,_1) =
m — 1. Therefore, #d,,) < m. From the definition ofi,, it is immediate that|d,,,|| = m.
Then, since|d,, || < #(d,,), we conclude thaté,,) =m = ||d,, || as required for (1)(c).

Note that ifw andu are in the same,—S, double coset of5,, then|w| = |lu||. As
lld. || = m for eachm, we have that eacy, lies in a distinctS,—S; double coset. Observe
that |D| = M + 1, and since there ar® + 1 distinct S,—S, double cosets [11, Theo-
rem 1.3.10],D is a set of double coset representatives. Since any elemets; d,, S,
takes then? above-mentioned positive roots to negative roots, it follows that > m?.
Thusd,, is distinguished, proving (2). O

Corollary 2.2. Letx € S,,. Then

(1) #x) = |Ixll,
(2) x € $3dy, S, if and only if#(x) = m.

Proof. Suppose that € S,d,, S,. Then we can writer = yd,,,;z with #(y) = 0=#(z), and
clearly, #yd,,z) < #(d,,). Recall that d,,) = ||d,,|| from Proposition 2.1(1)(c). Since
andd,, are both elements dof,d,,S,, we have|x| = ||d,|. Hence, #x) = #(yd;,z) <
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#(d,,) = |ldm || = |lx||. Note that each occurrence gfin any expression far produces at
most one element of {1, ..., k}N{k+1,...,n}. Thus, #x) > ||x||, which proves (1).

We use part (1) and arguments in its proof to establish (2)xF®1S,d,, S), we have
#(x) = ||x|| = lldyn || = m. Conversely, if #c) = m, then||x|| = m = ||d, ||, which implies
thatx € S,d,, Sy, and the proof is complete.O

ForO<m < M, let
Py =S, NS,
Proposition 2.3.

(1) P, = P,
(2) Pm = S(k—m,m,m,n—k—m)-

Proof. Part (1) is immediate from Proposition 2.1(1)(a).

Clearly Sg—m.m.m.n—k—m) < Sp. Observe thadl,, normalizesS—m,m,m.n—k—m), and so

d, d,
S(k—m,m,m,n—k—m) = S(lgl—m,m,m,n—k—m) < S)Lm7

giVing S(kfm,m,m,nfkfm) < Py
If s¢_pm € S, thend,,si—_mdpm € Sy.. But
AnSk—mAm = Sk—mSk—m+1- - - Sk—15kSk—1 - - - Sk—m+1Sk—m

which implies thats; € S;, a contradiction. Hencey_,, ¢ Sf’”. Similarly, si1m ¢ Sf’".

SinceP,, is parabolic it follows that,, < S—m,m m.n—k—m), and (2) is proved. O
Corollary 2.4. If w € P, thent(d,, wd,,) = I(w).
Proof. Immediate from Proposition 2.3(2) and the definitionigf O
Corollary 2.5. Let U be a parabolic subgroup af,,. Letr be a distinguished right coset
representative fol/ in P,. Thend,,rd,, is a distinguished right coset representative for
Udn in P,,.
Proof. This is immediate from Corollary 2.4.0
3. Thesquare of the Hecke algebra element cor responding to a distinguished double
coset representative
The goal of this section is to prove Proposition 3.5, which gives an expansion for the

square of the Hecke algebra element corresponding to a distinguished double coset repre-
sentative of a maximal parabolic subgroup. Proposition 3.5 forms part of the machinery
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needed for our analysis in Section 8 of the projection of the norm basis onto a maximal
parabolic subalgebra. Throughout this section we. let(k, n — k) En.

Forx,y,z € S,, define the polynomiaf,,; € N[£] to be the coefficient of’. occurring
in the expansion of 7. That is, write

~

Tx y = Z fxszz~ (3-1)
z€S,

Lemma3.l. Letx,y,z € S,, with fy,, #0.

(1) #x) — 1 <#(spx) <#H(x) + 1.
(2) If #(x) £ #(y) then#(z) > 1.
Proof. Firstly note that (2) follows immediately from (1) by induction on the length of
or y. For (1), the upper bound is clear.

We will use induction on ¢) = ¢ to establish the lower bound in (1). Write=
wid;wa, With w1, wo € Sy (S0 that #w1) = #(w2) = 0), and assume that#wid, w2) <
t — 1. Thensywid;wo € S,d, S, for somev < ¢t — 1. That is, sywid, w2 = x for some
x € 8,d,S,. Thend; = wl_lskiwz_l. By induction, #x) — 1 < #(sgx) < #(x) + 1. In other
words,

v—lg#(sk)?)év—i—l.

Since w; !, w,* € S, we have thatd, is an element of eitheSyd,_1S;, Sid,S; or
Sydy+1S3, each of which is impossible sinee<t — 1. O

We recall a result of Shi [14].

Theorem 3.2[14, Theorem 8]Letx, y, z € S,. If fy; # Othenxy < z inthe Bruhat order.
An elementary consequence is the following:

Corollary 3.3. Letx, y, z € S,. If fyy; #0, then

(1) #xy) <#(2);
(2) If #(x) =t and#(y) = 0then#(z) =t.

Lemma 3.4. For j1 < jo,

J2
T&‘jl...s_/'z T?_/'z...j‘_,'l = Tl + %‘ Z T“jlu-s[n“?jl'
i=j1

Proof. Elementary (by induction ogp). O
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Proposition 3.5.

(Tdm)z = T1+ Z fwTw

wes,

where#(w) > 1 for 0+# f,, € N[£]. (Note that we abbreviatg,, 4,,., in the expansion of
(3.1)to fi.)

Proof. For m = 1, the proposition is easily verified. Assume> 2, and writed,, =
dy—1uvsy whereu = Sk—m+1Sk—m~+2 - - - Sk—1 andv = Sk4+m—1Sk+m—2 -+ - Sk+1- Then, since
d-1=d, anduv = vu, we have

u=tddy, 1
= Tdm—l (Tuit_lfvf )Tm 1 + gTdm v—1 _1d
Now, v=tu=1d,,_1 € S,d,_1S; and so by Corollary 2.2(2), # 1u1d,_1) =m — 1.

§inqe #d,,) = #(d,—1) + 1, Corollary 3.3 implies that every term of the product
T4, Ty-1,-1,4, , containssi. Now

k—1
Tu Tu—l = Tl + é: Z TYk—m+1---~Yi---~Vk—m+l

i=k—m+1

- m
=T1+§ Zi=2 Tsk+i—l~~5k+m—lmsk+i—l' Hence

S
'ﬂl

by Lemma 3.4. Similarl

k-1
= Tdm—l (Tl + s Z TYk—m+1---~Yi<--Sk—m+1>
m
X (Tl + g Z TSk+i—1~-Sk+m—1~--5k+i—1) Tdm—l

i=2
By induction, assume

(Td1 1 —Tl“" Z fw

weS,

where #w) > 1 for f) # 0, and again we have abbreviated the coefficignt 4, ;w
from (3.1) tof,,.
The proposition will be proved if we can show that all terms in each of the products

T4, 4 T:kaerlmskferafln-Sk—erl T4,,_1s T4, 4 T5k+b—l~-~5k+m—l-~~5k+b—1 Ty, 4
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and

Ty, 4 Tsk7m+l~»-sk7m+a71---skferl Tsk+b—l---sk+m—1---5k+b—l T4, 1

containsy, for2< a, b <m.

The product (si—m+1---Sk—m+a—1- - - Sk—m+1) Sk+b—1 - - - Sktm—1 - - - Sk+b—1) adds in
length, and since it is an element &f for all « andb, its product withd,,_; is length-
additive. Hence,

7 -

Sk—m+1--Sk—m-+a—1---Sk—m-+1 T5k+b—1»-~5k+m—1-~»Sk+b—1 T4, 1

13

= Lspmt1oSk—mta—1---Sk—m+15k-+b—1+--Sk-+m—1-+-Sk+b—1dm—1"
It is easily determined that
Am—1Sk—m+1- - - Sk—m+a—1- - - Sk—m-+1dm—1 € Sx.d1Sy,
An—1Skb—1-- - Sktm—1- - - Sk+b—1dm—1 € Spd1S),

and

A —1(Sk—m+1 -+ - Sk—m+a—1 - - - Sk—m+1) (Sk+b—1 - - - Sktm—1 - - - Sk+b—1)dm—1 € Srd2Sx
for anya andb with m > 2. That is, by Corollary 2.2(2)
H(dm—15k—m+1- - Sk—mta—1---Sk—m+1dm—1)
=1=#(dmn—15k+b-1---Sk4m—1---Sk+b—1dm—1)

and

#(dm—1(Sk—m+1- - - Sk—mta—1- - - Skem+1) (Skb—1- - - Skm—1- - - Sktb—1)dm—1) = 2.

Thus an application of Corollary 3.3(1) to each of the products

T4,y Tvk—erl---Sk—m+a—1---Sk—m+1dm—1’ Ty, TSk+h—1-~-Sk+m—l~~3k+b—1dm—1
and
T4, 4 T(Sk—nl+1~~~5k7m+a71~~~5k—m+l)(~yk+b—1~~-5k+m71~~~“k+b—1)dm71

completes the proof. O
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Corollary 3.6. Letv € P,,. Then

7N-'dm TU 7Nwdm = Tdmvdm + Z 8w ’fw

weSy,

where#(w) > 1 for 0 # g, € N[&].

Proof. Sincev € S;, we havet(vd,,) = £(v) + £(d,,). From Proposition 2.3(1), we have
thatv = d,,,vd,, € P, S0 alsol(d,,v) = £(d,,,) + £(v). Thus

Tdm TU 7dem = Tdm fdn1 Tﬁ

= (Tl + Z fuTM>T,3 (where #u) > 1 for f, # 0, by Proposition 3.5

UESy

= Tf) + Z fu’fufﬁ = fdmvd,,, + Z gwfw

uesS, weSs,

where #w) > 1 wheng,, # 0, by Corollary 3.3(2) since®) =0. O

4. Basesfor the centre of the Hecke algebra

In this section we introduce the two bases for the centre of the Hecke algebra whose
relationship is the main topic of this paper. With the exception of Proposition 4.2, the
results in this section appear in the existing literature exactly as stated here, or in slightly
less generality.

Some results from [13] have been restated in the context of the Hecke algebZdfiver
and in the generality of compositions rather than partitions where appropriate.

4.1. The norm basis

Definition 4.1. Forh € H, A, u, o« En andu < A, we define theelative normof 4 from
S, to S, to be

N, s, (h) =Y TyahTy,

deD

whereD is the set of distinguished right coset representatives,oin S,. In addition,
define

M= Nsxfi,l(fwx)
and

be :=Ns,.s, ().
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For any multipartitiort with derived compositionr, we defineng := ;.
As C(y) is the Coxeter class df,, we cally,) the Coxeter class element&f,. Simi-
larly, i, is the Coxeter class elementf,.

Proposition 4.2. If « and 8 are conjugate compositions, thép = bg.

Proof. Since any pair of conjugate compositions can be obtained from one another
via a sequence of exchanges of adjacent components, it suffices to consider two con-
jugate compositions which differ by a single adjacent pair. That is, we may assume
=1, ..., My Agt1, .- Ap) @ndB = (A1, ..., Akg1, Ak, ... Ap). Then

with

Ns(xl*"‘*}‘k+)‘k+l*'“v)‘f) »Soz (nC{)

=N, ?»kfl)N.Sxk+xk+1,5<xk,xk+1) MOk s DI N Oy 25002 -

So to showy, = by it suffices to show

Nsxk+xk+1,5<xk,xk+1) (MG 1) = NS}\k+Ak+1»S(Ak+1.Ak) (Mhr1.200)- (4.1)

These norms are both centraffify, 1, , by [13, Proposition 2.13], and they are images of
each other under the algebra automorphisrigf, ,, , defined by reflecting the Dynkin
diagram about its midpoint. This automorphism fixes central elements and hence (4.1)
holds, proving the lemma. O

Note that ifo and 8 are conjugate compositions of there existst € S,, such that
Sy = Sg. Therefore, we writee* = g in this situation. As before, for any multipartitiah
of n with derived composition. of n, we defined™ := A~.

Theorem 4.3 [13]. LetA En.

(1) m. € Z(Hy).

(2) Every term with non-zero coefficient in the elemmpj contains every simple reflec-
tion in its reduced form.

(3) nw contains terms of lengtih— 1 and greater, and specializes §n= 0 to the Coxeter
class sumirZs,,.

Proof. Part (1) is [13, Lemma (3.23)(3)]. Part (2) is [13, Lemma (3.14)]. Part (3) is [13,
Corollary (3.15) and Lemma (3.23)(4)].0

Theorem 4.4[13]. LetA E n.

(1) (Transitivity) If S, < S, thenNs, s, (h) =N, 5, (N, s, ().
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() If h € Z(H;) thenNs, s, (h) € Z(H,).
(3) The setB = {b, | a - n}is aQ[&]-basis forZ (H).

Proof. Part (1) is [13, Lemma (2.12)]. Part (2) is [13, Proposition (2.13)]. Part (3) is [13,
Theorem (3.33)]. O

Note that the seB in Theorem 4.4(3) is indexed by partitionsmo{not compositions).
See Proposition 4.2.

Theorem 4.5 [13, (2.30)] Letx, u En. Let S, and S, be parabolic subgroups df,. If
b e Z1(H)) then

NSn,S)\(b): Z NSM,SfﬂSM(Td_led)'

dE'D)VP,

Proposition 4.6 [13, (2.32)] LetA and .« be compositions satisfying| + |«| = n, and let
A<, <p.letx e Sy andy € S, Then

Ny xS0, 8% S, (Tay) =Ns,.s,/ (fx)/\/sﬂ,s‘, (Ty).
Proposition 4.7 [13, (3.29)] For « I n, we have
byle=0 =[N, (Sa) : Sa|Ca-
4.2. The minimal basis

The minimal basis is the analogue of the class sum basis for the centre of the group
algebra. Its existence was shown in [9], and it was explicitly described in [5].

Theorem 4.8 [9]. There exists a set of elemelfs, | A - n} C Z(H) characterized by the
properties

(1) Nile=o=3,ec, Tw, and
(2) I — X_,ec, Tw contains no shortest elements of any conjugacy class.

These elements formZ{&1-basis forZ (H).

_An element inH™* is said to beprimitive if, when written as a linear combination of
{Ty | w € S, }, its coefficients have no common factors o¥%g¢& ]. The main result of [5] is
the following (using the partial order introduced in Section 1.3):

Theorem 4.9 [5]. The se{l, | A - n} is the set of primitive minimal elementsofH) ™.

Also we have:
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Lemma 4.10.

D) Ty =nw)-
(2) If rTyy, <he€ Z(H)* thenrly < h.

Proof. (1) is immediate from Theorem 4.3(3) and the characterization of Theorem 4.8.
Part (2) is [5, Corollary 4.6]. O

5. Aninner product on the Hecke algebra

The standard trace function on H is defined byt (7,,) = 1 if w =1 and 0 oth-
erwise. A generalization of this trace was defined in [7] as follows. Fix an element
h=Y yes, fwlw € Z(H), with r,, € Z[£]. Forw € S, seth(T,) :=ry, and extend lin-
early to allof H. If h = T1 then this is simplyt. In this section we introduce a more flexible
alternative formulation of this map as an inner product.

Define a map,) : H x H — Z[&] by setting

< Z rw T, Z ”;,Tw>= Z Fuwly,. (5.1)

wes, wes, weSy

If h e Z(H), then (5.1) defines the mdp since(h, T,,) gives the coefficient of, in .
This map and Proposition 5.1 were developed during discussions between the first author
and Leonard Scott in 1999.

Proposition 5.1. Let u, v, w € S,. The map defined i5.1) is an inner product orH
satisfying

(T T Tt T) = (T Ty 1T 7o), (5.2)

Proof. The properties of an inner product are easily verified from the definition. We prove
(5.2) by induction on the length af.

If £(u) =1, then we may sat = s € S, and reduce the problem to consideringnd
w in the sames)—(s) double coset of,, (if they are in different double cosets then both
sides of (5.2) will be zero and the statement holds). Further=fw andu = s then the
statement holds by the symmetry of the inner product. So to prove the resdtfor 1
we need to check the cases wherg w in the saméds)—(s) double coset.

There are two cases for such a double cdski(s) in the symmetric group: either
ds =sd ords # sd. If ds = sd then the double coset consists of ofdy ds} and there is
just one case to check:

’ﬂz

(T, T T0sTo)

(Ta, Ty (Ty + £ Tys)) = (Ta, Tya + Ty + £ Tds)
=& =Ty + & Ty, Tas) = (T Ty Ty, Tys)-
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Whends # sd the double coset has four elemefifsds, sd, sds}, and so there ar(éz‘) =6
cases:

<Td’ T Tas ~s> = <Td7 fvd + Eivds) =0= (Tsds» Tds) = <Tv d’fs’ ds)’

(Tds» TsTsde) = <Tl[S1 7~wds + sfsds> =1= <TA dsTSs 7~wsa'),
(fdm Ts fsds Ts) =&= (Ts Tds TSa Tsds)-
The cases

<Td» Tsﬁdfv) = (fvfdfs» fsd) and <f\“da Ts fvds Tv) = ( Yf&‘dT.Yv fydx>

are symmetric to cases listed above.
Now letu = u1s for someu € S, ands € S with £(u1s) = £(u1) + 1. We have

Iy, T,(T,-1TwTu,)T;)  (for the same reasons)

which completes the proof.O
Corollary 5.2. LetA, u En. Then

(NSnvl(fwk)’ Tu’u) = <Nsn’1(fw#)’ ka)'

Proof. Immediate from 5.1, the symmetry of the inner product, and the fact that the norm
from the identity sums over the entire groupz

The following lemma was stated originally in terms of the functipfor a fixed. €
Z(H). The statement below is a direct translation of that result.

Lemma5.3[7, Lemma (3.5)]If h € Z(H) then(h, T, T,)) = (h, TyTy).
A key property of the inner product in our context is the following:
Lemmab.4. LetA n. The coefficient of ) in h € Z(H) is (h, ka).

Proof. Immediate from Lemma 4.10(2).0



A. Francis, L. Jones / Journal of Algebra 289 (2005) 42—69 57

6. Thenorm of theidentity in terms of the class elements

The goal of this section is to prove Theorem 6.3, which gives the coefficient of a class
element in the norm of the identity. This result is required for the proof of Theorem 7.4.
Eventually, Theorem 6.3 is subsumed in the statement of Theorem 9.2.

Lemma6.l. For1<i<n-—1,
(F(n)a fslsz...snsi...sl) = 5(1—‘(}1)5 Tslsg,..s,,s,-_l...s1>'
Proof. Notethatsyss...s,s;—1...51 andsys2...s,s; ...s2 are in the same conjugacy class
and are conjugate by somes S, satisfying the Geck—Pfeiffer property Il (Theorem 1.1(ii)
of [8]), and so the coefficients of their corresponding elements in any central element of

the Hecke algebra are equal (using Lemma 5.3). In particulay,, Tyssosusiop.51) =
(Inys Tsysg...505:..50) - USINg Lemma 5.3 again, we have that

<F(n), ’fslsz SnSi.. Sl)

(s Ty Toassusi.sa)

(Fon- (T1+ET) Top. s
(T Togeoosusioso & Tsasp...susi o)
(

(

Ty, ng i 52) (by linearity, Theorem 4.3(2) and Lemma 4.10(1))

Ty € Tyysp. sysiog.os):
which proves the lemma. DO
Proof. This follows from repeated application of Lemma 6.10
Theorem 6.3. The coefficient of 7, in NS,,,l(Tl) is [S, : S, ]€"*. Equivalently,
(Ns,1(T0), Ty ) =[Sy : S316%
wherew; is as defined in Sectich2.
Proof. Firstly note that the two statements in the theorem are in fact equivalent by
Lemma 5.4.

Secondly note that the symmetry of the norm from the trivial subgroup with respect to
the inner product (Corollary 5.2) means that

Wi 1(T2). Tus ) = (W, 1 (T ) Ta).



58 A. Francis, L. Jones / Journal of Algebra 289 (2005) 42—69

Thus the problem reduces to identifying the coefficien’pin the norm of7,,, from the
trivial subgroup tasS,,.
The transitivity of the norm implies

Ns,1(Tw,) =N, .5, (Ns,.5,1 Ns,_1.1(T,)))
=Ns,.5 (Ns,.s, (1)
=Ns,.s, (N5, 5,1 (T1))- (6.1)

The result therefore depends on finding the~coeffic~ieﬂ~tlcih expression (6.1). Now (6.1)
is a linear combination of terms of the form 1Ty Ty whered is a distinguished right
coset representative 6§, in S,,, and wheref,, occurs inmNs, s, l(Tl) (and is therefore
an element of,). Sinced is a coset representatr\/EJ, occurs |an 1Ty Ta only if w =
(by Theorem 3.2). y 5

Similarly, by Theorem 3.2, it is straightforward to see tii@bccurs inn, N, s, _; (T1)
only whenT,,-1 occurs inN, s, _, (T1) for someT,, occurring in;.

The norm./\/gng_l(fl) splits into commuting factors along the components .of hat
is, if A =(A1,...,A;) then

Ns,.5,4(T1) l_[/\/'sA Si1 (6.2)

The non-trivial right coset representatives of edgh 1 in Sy, are of the formy,; 1...45, ;-1
e Saqthi_4ri 4 Tor 1< j < A; — 1. Thus each factor in (6.2) is a sum of products of
the form

T,

Sx4jeSx+1; -1 Tsx+)»l- —1.-Sx+4j

(6.3)

wherex = A1+ --+24;—1. By Lemma 3.4, each non-identity term in the expansion of (6.3)
is of the form& T, wherew is a tran~sposition. Thus the non-identity terms\ig, s, ,(71)

are products of terms of the fora¥,, wherew is a transpogition ir$,.. In addition, ifw

is the longest transposition i), then&! is the coefficient off,, wherer = |{}; > 2}|, by
(6.2).

Therefore,n, N, s,_,(T1) containsT1 only whenn, contains a transposition. By
Lemma 4.3(2),n, contains only the longest transposition §y, and its coefficient by
Lemma 6.2 i [}_, %2 = £¥1++4 =2 Hence, the coefficient dfy in n; N, s, , (T1)
is §A1+---+A,72t§-t — EIA_

So T3 occurs in./\/Sn,l(TwA) for each coset representative §f in S,. The statement
follows. O
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7. A partial order on the norm basis and the coefficient of the Coxeter class

In this section we prove that the elements of the norm basis ordered by refinement of
partitions are also ordered by the Hecke algebra order defined in Section 1.3. While this
result might be of independent interest, our chief use for this fact in the present paper is to
obtain explicitly the coefficient of the Coxeter class element in a given norm basis element
(see Theorem 7.4).

Recall that the seB := {b, | a I n} is the Q[&]-basis for the centr& (H) defined in
Section 4.1.
Lemma 7.1. For any integers: andk withn —k <k <n, £byy < b n—k)-

Proof. Using the fact that the double coset representatjve as defined in Section 2 is
also a right coset representative®f , ) in S,, we have

bik.n—ky =N, Sty Mik.n—k))

i

2Ty, , TSl~~~Sk—lSk+l~~~Sn—l Tq,

3

2 . .
=Ty s 1sessn1l, (sinced,,—;, commutes withyy ... sg—15k+1...Sn—1)

- . - -5
> T:vl‘..sk,lskJFl..‘sn,l (E Tsk) (Smce§ Tsk < Tdnfk
= 571‘1~~Sk718k+1~-snfl T,

Sincesy ... sg—15k+1- - - Sp—18k IS @ minimal element of the Coxeter claSg,), and since
bn—ky € Z(H)* [5, Proposition (5.3)(ii)], it follows that I,y < bk..—k) by [5, Corol-
lary (4.6)]. Sinceb,, = I'»), and sincefw(k,nfk) occurs inb ,—k) but not inb,), the
lemma follows. O

Theorem 7.2. Let, u F n. If A < w in the refinement order, thegl =5, < b;.

Proof. We first prove the theorem wheh = (A1,...,A,) and u = (A1,...,Ar—2,
Ar—1+ A;). In this case we have

by =Ns,.s, ()
=N5s,.5,(Ns,.s5 (1))

r—2
=Ns,.s, (( [1WVs,.5, ))N Siy_g+3r-S6y 1) (mrl,m))

i=1

r—2
> N, 5, (( 1_[ N5, (3 )) ENS, 10 Si (77(A,_1+x,))> (by Lemma 7.1)

i=1

=EN5,.5,(Ns,.s, () =EN,.5, (1) = &by
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Similar arguments demonstrate the validity of the theorem when(iq1, A2, ..., A;—1,
Ai + Aig1, Aig2, ..., Ar) With 1 < i < r — 2. The extension to arbitrary < u is then
immediate. O

Corollary 7.3. Write by, =Y, , a2 for a Fn andry ;. € Z[£]. Thena < B implies
Erg) <o foranyi -n.

Proof. The partial order of Theorem 7.2 implies that for an arbitrary basis eleffignt

of H, if A < u then the coefficients,, ; andr,, , of T, in by, andb,, respectively satisfy

the relationtr,, , < ry, . In particular, this is the case whenis a shortest element of a
conjugacy class. It follows that for any sequence of partitions totally ordered by refinement
between(1") and(n), the coefficients of any given class element also satisfy the inequality
by Lemma5.4. O

Theorem 7.4. The coefficient of the Coxeter class elem&pi in b, is "1,

Proof. We have from Lemma 4.10(1) that the coefficient@fy in b, is 1. We also have
that the coefficient of () in by is "~ by Theorem 6.3. Clearly both of these coeffi-
cients satisfy the theorem statement. Given any sequence of partitidogally ordered
by refinement betwee@”) and(n):

(1n) =ag<---<opy_1=(n),
Corollary 7.3 gives the following relations, whergis the coefficient off ;) in by, :
' =rozErn =28z 2 ="

It follows that all the terms in the above order are equal, gngd= £"~1, so thatr; =
g"~1=, Since length increases by one with each step of the refinement beeléy,. The
result follows since every partition is part of such a full sequence of partitions between
(1) and(n) ordered by refinement with length increasing by ongel

Remark. Applying the map front{ — H, (as described in the Remark in Section 1.3) to
the expansion ob,, the coefficient of the Coxeter class element in Theorem 7.4 in terms
of the Z[q, ¢ ~1]-basis forH, is (¢ ~1(¢ — 1))"~1~!«. Note that under the maf — H,,

Ty = ¢~ 921, , andby = g ~'/2b, ,, wherel,, , andb, , are the corresponding
H, versions. This is an example of a result whose statementZiyey ~1] is independent

of the partial order ofi{ *—which makes sense only ovE&ts ]—but whose proof is made
possible by treating the Hecke algebra &{&]-module and using the partial order.

8. Projections of normsonto maximal parabolic subalgebras
The main result of this section is a projection formulagia norm basis element) onto

a maximal parabolic subgroup. Results in this section are from [12] but have not appeared
in the literature.
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Let B={b, | @ - n} (see Section 4). Iff = (61, ..., 6;) is a multipartition ofn, write

Ne =Ny ---MNeo,-
For A E n, define the projection;, : H,, — H, by setting

=~ Tw, if we S)w
TT), T, = X
( w) {O, otherwise

and extending t@<,, linearly.

Theorem 8.1[12]. Letb, € B and writexr := w ,—x). Then

7w (by) = Z Z;L,VNSW,,,;(),S(M_V) (77(;1.,1)))’ (8-1)

(,LL,\))EA([(V,,_/() (@)

with thez,, , non-negative integers.

Proof. The proof is by induction on. The theorem is easily verified fer= 2, so assume
it in all cases less tham.
For (i, v) € Ak n—i(a) we have

by =N, s, (Na)
= N5, Snio (Ns(k,n—k)ss(u,v) (Mu.v))) (by Theorem 4.4 and Proposition 4.2)

n—k

= Z Ns(k n—k)» Py (’fdmNS(k,n—k);S(u,v) (n(//nv))’fdm) (by Theorem 45)
m=0

—k
Z Snirs P (Tan N5, 0N, .5, (1) Ta,)  (Dy Proposition 4.6)

Consider the general term in this last sum. For this term, V\Mﬁ‘su(’?u) as
Ar + By where Ay is the projection ofNS,{,SM (nw) OoNto Hx—m,my iN Hi. Similarly,
write Ns, ,.s,(ny) @s A,k + B,—x Where A,_ is the projection of\s, , s,(1,) onto
Honn—k—m) in Hy—g. Thus

Nse.s, N, .5, (1) = AxAn—k + Ak Bu—i + BrAp—k + BBy k.

By induction,
Ak = Z ZMla#ZNS(kfm.m)vs(ul,uz) (r](ﬂls/’vZ))’
(HlsMZ)EA(k—m,m)(/i)
and
An_k = Z ZVlaVZNS(m.n—k—m)vS(Ul.uz) (n(vlvVZ))’

(v1, VZ)GA(m,n —k—m) )
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with thez,, ., andz,, ,, non-negative integers. We abbreviate the- m,m, m,n — k)-
multipartition (w1, p2, v1, v2) of « by @. Then

ArAn—k = Z Zul,uzzvl,vaPm,S& (7707) (82)
(MlvMZ)GA(k—m,m)(M)
(v1, VZ)EA(m.nfkfm) )

by splicing the norms back together utilizing Proposition 4.6.
Each of the terms in (8.2) is then multiplied By, on the left and right. Write

NPnhS& (77&) = Z Tr_ln& Tr
rer

whereR is the set of distinguished right coset representativesfon P,,.

Becausel,, is a distinguished double coset representativépf,—) in S,, we have
(rdy) = (dur~Y) = €(d,) + €(r) for any r € R. Then, since& = d,,rd,, is a distin-
guished right coset representative ﬂﬁr’ in P, (Corollary 2.5), it follows that:

Tdm Trfln& Tr Tdm = fdmrfln& Trdm = Tffldm Na Tdmf = Tpflfdm Na Tdm T;.

Sincen; € Hy andS; < P, Corollary 3.6 implies that

Ta,maTs, =ngim + Y fuTw, where#w)>1if f, #0.

wes,

Since #r) = 0, we have from Corollary 3.3(2) that

f;—lfdm Na idm T, = f;—l?’]&dm T, + Z gwf‘w, where #w) > 1if g, #0,

weS,

and so,

Ta, NP, 52 (13) Ta,, = NPy, S (N ) + Z hwTy, where #w) > 1if h, #0.

weSy,

Thus, applying Theorem 4.4(1) @ n—k).

T (Ns(k,,l,k) Pon (Tdm ArAp_i Tdm))
= > ZurnoZuoNy, o sin (gin)- (8.3)
(MluuZ)eA(k—m.m) (D)

(v1, VZ)GA(m,n—k—m) v)

Collecting common terms and re-indexing, (8.3) may be written as
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0 (NS(k.n—k)aPm (Tdm AkAn—dem ))

= Z ZﬂstS(k,nfk)sS(p..v) (M)

(W V)EA G n—k) (@)

with thez,, , non-negative integers.

We now examine the produ(iym BB,k Tdm. Since By projects to zero ot (x—m,m),
every non-zero term aB; containss;_,,. Similarly, every non-zero term df,,_; contains
Sk+m- Let fwk be a non-zero term iB; and wa a non-zero term imB,_;, assuming
for simplicity that the coefficients are one. Naw, w,—x € Sk, n—k) With £(wrw,—¢) =
L(wg) + £(wp—1), and sinced, is a distinguished double coset representativ§ pf, )
in S,, we have

7’-:‘dm ka 7m"wnfk fdm = 7’:dm ka Wy—kdm * (84)

If dpwrwn—idm € Sk n—k), thend, wyw,_rd,, € Py, (by definition of P,,), which implies
that wiw,,_i € P,Z’" = P,,. This is a contradiction sincey containss;_,, ¢ P, or since
W,k containssyy,, ¢ P,. Thus, Corollary 3.3(1) implies that every term in (8.4) contains
sk since #d,, wyw,_xd,) > 0. Hence, every term dT’dm Ban_dem containssy.

Similarly, every term of the product;, By A, Ty, and Ty, Ay B,_i Ty, containssy.
Applying Corollary 3.3(2), we conclude that

7 (Nsnts P (Tt (B An—i + Ak By—i + BiBu—i)T4,)) = 0.
This completes the proof of the theorent
Corollary 8.2. For each(u, v) € Ak n—k),

2w = [Ns, (Su) * N (Sum)]-

Proof. We have from Theorem 8.1 that

JT(ba) = Z ZM’VNS(k,n—k)»S(M,v) (U(u,v))~

(1, V)EA G n—k) (@)

By Proposition 4.7, when we specializg by settingé = 0 we obtain[ N, (Sy) : Su]1Cq.
When we projectC,, via = we get a sum of disjoint subsets 6f,, corresponding to
(k, n — k)-multipartitions(u, v) of «. Thus

7 (ba)lg=0= > [ Vs, (Se) = S ] Crum)-
(1, V) EA (e, n—k) ()

On the other hand

Nsn—t-Siuy M) e=0 = [Ny (SGe)) = Sy ] Cumy -
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Consequently, for eacty, v) € Ak n—i) (o) we have

[V, (Sew) + Sem) ] = 2w [Nsniy (S * St ]

and the corollary follows. O

9. Coefficients of class elementsin norms

In this section we generalize Theorem 8.1 to arbitrary parabolic subalgebras, and use
this generalization to prove Theorem 9.2—our main result—on the coefficients of class
elements in norms.

Theorem 9.1. LetA En anda - n. Then

1S, ]
m1.(be) = —————— Y 1Cols, N, 5, (n0). (9.1)
1,1+ 1Cals, , 5=,

Proof. If A has one component,= (n), then there is only one multipartitioh of shape
A using the components of, namelyé = («) itself, and the statement is trivial. ¥ =
(k, n — k) then we can apply Theorem 8.1 and Corollary 8.2 to obtain

mbe) = Y [Ns,(Ss): Ns, (So) N, s, (m0).

feA)(a)
An elementary calculation gives that

, _Sal - 1Cols,
[Ns, (Se) : Ns, (So)] S0~ [Cals,”
and the statement for the case in whichas two components follows.

Now suppose inductively for some fixed= (11, ..., ;) E n, with r > 2, that (9.1)
holds for all compositions of with fewer components thakn. In particular, we assume
that (9.1) holds fol' = (A1, ..., A, 2, 1. _;) wherer, _; =X, 1+ 2A,.

Write ' = (61,...,6,—2.6,_;) € Ay(a) With 6; - 2; for 1<i <r —2 and6,_, -
A._4. By our induction hypothesis we have

1Sa]
Mo (ba) = ———=— > |Corls, N5, (9")

S| -1C
[S3/] - |Cals, beas @

|Sn |

= > (1CO b2 S0y 1Car s,
IS n_) | - |S}‘;—1| “|Culs, o€, (o) ’ Lotr=2 r=1"h 1

X Ns(klv-wkr—Z)’S(le-"-‘)r—Z) (77(01,.4.,0,_2)) : NSA;71,59;71 (770;_1)) . (92)
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Let ;» be the projection from the algeb?d,, onto ™, . Thenr,~ acts as the identity
onH,....a_p), @and acts on norms iﬁi,\;_l according to Eq. (8.1) and by the inductive
hypothesis according to (9.1).

Thenmr, = mm;/, andmy» acts trivially on all but the last factor in each summand of
(9.2), namely

NS}‘;—l’Sgrl—l (779;71)

The image of this norm under the projectian- to the maximal parabolic subgroup
S0, _1.1,) Of Si,_;4a, can thus be decomposed by induction as follows:

Ty (NS)‘;‘—l’SH;—l (779;71))
|

[Se 1,00 |C9L1|Sx;_l

Y

-1

x > 1C 61,0010, 1000 " NSi, 100150, _y.00 N6, -1.6,)-
(@"*laer)e/‘()\r,l,)xr) (9;,1)

Composingr;~ andr;,’ to giver; we have (after some initial cancellations):

3 (ba)
_ |SVl|
IS0, hr—2) | - [Cals,

|C(91,~~,9r72)|S(A1,..‘,x,_2> N
x Z S| NSy 25010, NO1....6,-2))
Q/EAA/((X) (Ar—1,Ar)

X Z 1C6,-1.6,) |S(x,_l,xr) 'Ns(xr_l.xr),s(e,_l,e,) (M@,-1.6,))
(9r71,9r)€A(xr,1,Ar>(9,/,1)

|Sn

X > 1CH 02 ISay s 1CO-100 IS0, i)
feA; (a)

X NS(M ..... 255010, _2) (M@....00_2) 'NS(xr,l.A,),S(e,.,l,e,-) (M6,-1.6,))
[Sul

= |Cols, - N,.s, (1),
GRS
€A ()

which completes the proof.O
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Remark. Note that when = (n), the norms in the summation in the statement of Theo-
rem 9.1 are only up to a proper subgragjpof S,. Therefore, since these multipartitions
0 € A, (a) are not conjugate as-multipartitions, Proposition 4.2 does not apply and the
norms cannot be pulled out of the summation.

Theorem 9.2. Letb, € B and letl, be a class element. Then

bo =y (15)% (wa )" I

ibn

Proof. Firstly recall that the coefficient af} in b, is exactly (by, Ty, ) by Lemma 5.4.
The critical observation is that this value is preserved under the projettion) onto?;,,
so that(by , Ty, ) = (m5.(ba), Tw, ). By linearity of the inner product we have

(baa Tua) = <7T)L(ba)7 Tw;)
|Sn|

__ 5 ICols, (Ns,.50m0)s Ty ).
S i, , 2 |18 00 o)

€Ay(@)

Now regardless of which € A, (@) is taken,Jy =1,, and so by applying Theorem 7.4 to
each component af;, the coefficient of the canonical Coxeter elem@{;}; is glr—le jn
each case. ThusVs, s, (79), Tw,) = €' is independent of, and so may be pulled out
of the summation. Then,

|Sn| |Sn| |C6|SA
T AT |Cols, =
[Sx] - 1Cals, Z e Z 1551

" GeA, (a) |Cals, 0eA, (@)
1
=|Cs,(wa)| Y
dedr @) |Cs, (wg)]
= (L5,)"" (wa). (9.3)

which completes the proof.O

Remark. Utilizing the mapH — H, as described in the remark in Section 1.3, this theo-
rem can ultimately be translated into a corresponding result®iery ~1] by considering
the analogous normig, and class elements, over that ring, and replacing thein the
statement of the theorem with (¢ — 1). See the remark after Theorem 7.4.

Remark. Theorem 9.2 generalizes the result for the norm of the idehtity in Theo-
rem 6.3, effectively making 6.3 redundant. It also includes as a special case Theorem 7.4,
which gives the coefficient of the Coxeter class elememnt,in

An immediate generalization is the following:
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Corollary 9.3. LetAFn andu < A. Then

N5, () = Y (Ls))S (wp g~ Iy,

QEAA

10. Examples

In this section, we illustrate Theorem 9.2 by explicitly giving norms and class elements
in terms of the standard basis flrwhenn = 3; we give tables of coefficients for8n < 5
which were obtained using Theorem 9.2; and we demonstrate use of the formula to obtain
a coefficient inS1g.

10.1. Expansions for norms and class elements wher8

Explicit expressions for norms and class elements for Hecke algebras ofSypesl
S, are listed in [13] (ovetZ[q, ¢ —11) and [5] respectively. We reproduce them foe 3
here:

The norms:

b(l,l, 1) = Gfl + 35 Tsl + 3& Tsz + SZTS]_SZ + ngszsl + §(3 + 52) TSlSZSl
=61y + 3%l +ET ).
b(Z,l) = Tsl + ’fsz + gﬂlsz + ‘i:fszsl + (1 + “;:2) TS:I.SZSl = F(Z,l) + EF(3),
b = 7~131S2 + fszu + ‘57:51&2& =13,

where ther’, are the following class elements:
Faay =",

F(Z,l) = Tsl + f&‘z + Tslszsla
I'3) = 715152 + 7~WS231 + ETSlSZSl-

10.2. Coefficient tables whéh< n <5

In the tables below, the row labelled lygives the coefficients of the class elements
in by. That is, the entry in positiotw, A) gives the coefficient of, in by,.

n=4 1% 21 @31 @ @

n=3 13 @1 © ah 24 1z 4?2 &2 g3
) 6 % g2 2 1% 2z % g
2.1 1 £ 3,1 1 0 &

) 1 @) 2

4 1
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n=5 1% 213 (G135 21D 41 (32 6B
5 120 6@ 22 302 53 13 gt

(2,13 6 6t 6& <
(3,1% 2 0 % £ £
(22,1 2 £ 2% &2
4,1 1 0 &
3.2 2 ¢

(5) 1

10.3. A coefficient irf1o

vvvvv

ficients in Theorem 9.2 from the left-hand side of Eq. (9.3), this is

|S10/E/632 1322111

Z |C9|S(5,3,2)'

156,32 - 1C3,2,2,1,1,1) | 510 beAssn B2211D)

We have

A5,3,2) ((3, 2,2,1,1, 1))
={((3,2,(2.1,(1.1),((3,2.(1,1,1),(2), (3 11),(21),(2),
((22,1,3.(1.D),((211,1,3,(2)},

and
5.4.3 3.2
1C(3,2),2.1),(1.1)S532 = = 60,
5.4.3
1C((3.2.(1.1.1).@2)|S532 = = 20,
5.4.3 3.2
1IC(3.1.1).2.1).2)|S532 = = 60,
G5-4H3-2 3.2.1
IC220.@.00) 5680 =~ 5 = 60,
5.4 3.2-1
IC@110.3.@ 5630 = —3— =20

So our coefficient is

101¢ (4+2+1)—(2+1+1)

987654 (60+20+ 60+ 60+ 20) = 11£3,
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