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The W-Beijing strain of tuberculosis has been identified in many
molecular epidemiological studies as being particularly prevalent.
This identification has been made possible through the develop-
ment of a number of genotyping technologies including spoligo-
typing. Highly prevalent genotypes associated with outbreaks,
such as the W-Beijing strain, are implicitly regarded as fast spread-
ing. Here we present a quantitative method to identify ‘‘emerging’’
strains, those that are spreading faster than the background rate
inferred from spoligotype data. The approach uses information
about the mutation process specific to spoligotypes, combined
with a model of both transmission and mutation. The core principle
is that if two comparable strains have the same number of isolates,
then the strain with fewer inferred mutation events must have
spread faster if the mutation process is common. Applying this
method to four different data sets, we find not only the W-Beijing
strain, but also a number of other strains, to be emerging in this
sense. Importantly, the strains that are identified as emerging are
not simply those with the largest number of cases. The use of this
method should facilitate the targeting of individual genotypes in
intervention programs.

mutation � transmission rate � Beijing strain � infectious disease �
molecular marker

A broad goal of the development of effective tools for
genotyping the bacteria or viruses causing infectious dis-

eases has been the classification of isolates into distinct types. In
the case of Mycobacterium tuberculosis, one of the outcomes of
this development has been the identification of a particularly
aggressive strain known as the Beijing or W-strain (1, 2). These
genotypic data, however, can also be used to verify chains of
transmission and to make inferences about population level
transmission patterns. For example, the occurrence of large
clusters of identical genotypes in a sample is thought to be
indicative of recent tuberculosis transmission (3, 4), and in this
context, the size of a genotype cluster carries some information
about the rate of transmission associated with the genotype. One
use of such information is to study possible risk factors for
infection, such as HIV status, by correlating them with the extent
to which these data form clusters (3, 4).

An unusually large cluster in a sample may indicate a rapidly
spreading strain; however, it may simply indicate the age of the
genotype (5). For instance, strains that have been present in a
population for a long time may have accumulated a large number
of cases despite having a slow transmission rate. One way to
access information about the age of a strain is to consider the
number of mutation events identified in the history of that strain.
That is, an old genotype has had ample time to generate many
mutants, which should be manifested in the sample. We observe
that on average, if two strains have the same cluster size and the
same mutation rate, then the one with more observed mutation
events is older, and correspondingly, because the clusters are of
the same size, the one with fewer observed mutation events has
spread faster.

The features of data obtained from spoligotyping (spacer
oligonucleotide typing) technology are key to making our anal-

ysis possible. Spoligotyping is a reliable and informative tech-
nology for characterizing the genetic structure of tuberculosis
populations (6). Spoligotype patterns are produced by hybrid-
ization of sample DNA to oligonucleotides based on well char-
acterized specific sequences at the direct repeat locus (7). Each
genotype is represented by a binary string of length 43. Variation
at this locus results from deletions of adjacent blocks of repet-
itive units (8). (Examples of spoligotype patterns and their
mutational relationships are given in Fig. 1). For our purposes,
spoligotyping has the following advantages: first, it allows iso-
lates to be placed into unambiguous genotypic classes; second,
genotypes related by a single mutation (deletion) event can be
identified; and third, the direction of the mutation event can be
determined. These advantages permit, for each genotype, the
identification of other genotypes in the sample that could have
arisen from it by a single deletion event. The number of such
descendent genotypes is the inferred number of mutations from
the parent genotype.

Defining a ‘‘strain’’ to be a set of organisms with the same
spoligotype, we designate as ‘‘emerging’’ a strain that is spread-
ing significantly faster than the background transmission rate. In
this article, we propose a method of detecting emerging strains
by invoking the principles outlined above, by constructing a
model of disease transmission and marker mutation, and by
using false discovery rate analysis to correct for multiple statis-
tical tests. Our approach is an advance on examining cluster sizes,
which, to our knowledge, is the only available basis for compar-
ing the transmissibility associated with different genotypes. We
then apply our method to four published data sets of spoligotypes
from M. tuberculosis and Mycobacterium bovis isolates.

Overview of the Model and Methods
The underlying model of transmission is that the growth of the
number of cases is exponential and deterministic. The mutation
model has such features as: (i) the mutation rate of a given
genotype is proportional to the number of spacer units present
in the direct repeat region, and (ii) each mutation event gives rise
to a new genotype, the infinite alleles (IA) assumption. We
assume that a constant proportion of the infectious population
is sampled across all of the strains. This model is used to obtain
an estimate of a parameter related to the ratio of mutation rate
to transmission rate, based on the entire data set. We then test
the hypothesis that this parameter computed for a given strain
is the same as that for the data set. Testing is done by computing
the probability of observing the same number of deletion events
from the associated genotype as actually observed or fewer (the
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p value). The q value of a strain, derived from the p value and
preserving the same ordering on the strains, represents the
minimum false discovery rate across multiple hypothesis tests for
the strain to be regarded as significant. More details of the model
and methods are provided in Methods.

Application of the Model to Genotype Data
We analyzed three data sets of M. tuberculosis spoligotypes and
one of M. bovis spoligotypes: Soini et al. (9), Jou et al. (10),
Ferdinand et al. (11), and Aranaz et al. (12). We will refer to
these data sets by the name of the first author. The studies cover
a variety of regions: Texas, Taiwan, Madagascar, and Spain,
respectively. Soini is a very large data set (over 1,200 isolates);
Jou and Ferdinand are recent data from geographically distant
populations; and Aranaz is an interesting contrast concerning a
different bacterial species (M. bovis) in different hosts (including
cattle and goats).

For each genotype in each data set we obtained a q value, and
those whose q values are �0.8 are reported in Table 1. This value
was chosen to capture as many plausibly emerging strains as

possible. To test the stability of the results under differing
assumptions about the completeness of sampling, we used a wide
range of values for the sampling fraction f . Across the board,
changes in the assumed sampling fraction had little effect on the
outcomes of the study in terms of which strains were detected.
Minor changes in ordering were observed, and the number of
strains detected dropped with the sampling fraction.

The Texas data set (Soini) is the largest data set we analyzed,
with 1,283 isolates consisting of 225 genotypes. The analysis in
Table 1 reveals five strains that exhibit an elevated transmission
rate. Notably, although the W-Beijing strain S1 is one of these
strains, other strains (S12, S3, S24, and S214) are also found to
be growing rapidly. It is remarkable that all these strains have q
values �0.04, regardless of sampling fraction, and that none of
the other 220 strains in the data have q values �0.8. The data set
from Taiwan (Jou), with 421 isolates and 113 genotypes, has
fewer emerging strains. However, again we see that the W-
Beijing strain J9 is spreading faster than the background rate
(genotypes from the Jou data set are labeled in this article by a
J, together with the order in which they appear in figure 1 of ref.

Fig. 1. Spoligotypes related to strain S171�J22 in the M. tuberculosis data sets of Soini et al. (S13, S28, and S171) (9), Jou et al. (J17and J22) (10), and Ferdinand
et al. (F47 and F50) (11). Each filled square represents the presence of one of the 43 spacers at the direct repeat locus. The numbers in parentheses refer to the
sizes of clusters in the relevant data sets. Arrows indicate possible deletion events such that derived genotypes are at the head and parental genotypes are at
the tail of each arrow. Note that relationships with genotypes other than these three are not shown here (some are shown in Fig. 3). In this set of related strains,
only J22 was identified as emerging.

Table 1. Emerging strains detected in the analysis

Data set

f

0.95 0.5 0.1 0.01

Strain q value Strain q value Strain q value Strain q value

Soini S12 0.00001 S12 0.00012 S1 0.00040 S1 0.00043
S1 0.00005 S1 0.00014 S12 0.00040 S12 0.00058
S3 0.00045 S24 0.00257 S24 0.00734 S24 0.00853
S24 0.00045 S3 0.00401 S3 0.01584 S3 0.02272
S214 0.00669 S214 0.01638 S214 0.03227 S214 0.03782

Jou J9 (S1) 0.03428 J9 0.11067 J9 0.26617 J9 0.35067
J20 0.04641 J20 0.33131
J22 (S171) 0.04641 J22 0.33131
J64 (S7) 0.78511

Ferdinand F109 0.55080
F86 0.55080
F21 0.72113

The genotypes under each data set heading are ordered by q value. Where genotypes in the table from the Jou
or Ferdinand data sets also appear in the Soini data set, the corresponding labels from Soini are given in
parentheses. Genotypes from the Jou data set are labeled in this paper by a J, together with the order in which
they appear in figure 1 of ref. 10.
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10. As with the Soini data, it is noteworthy that this is not the only
such strain. Strains J22, J20, and J64 also appear (although J64
occurs only when f � 0.95, and with a high q value). The data set
from Madagascar (Ferdinand), with 301 isolates and 92 geno-
types, reveals only strains with q value �0.8 when the sample is
assumed to be almost complete, and these strains all have a high
probability of being false discoveries. Finally, the M. bovis data
from Spain (Aranaz), with 182 isolates consisting of 24 geno-
types, do not exhibit any emerging strains. This outcome may be
because of barriers to transmission caused by farming or species-
related subdivisions of the host population.

Discussion
The present study aims to identify strains within a given outbreak
that are spreading considerably faster than the background of
that particular data set. The key step to enabling this identifi-
cation is the incorporation of the mutation process, which adds
information about the transmission rate beyond that provided by
the cluster size. The advantage of using this additional informa-
tion can be seen by plotting the negative log p values (or negative
log q values) against cluster sizes. Fig. 2 shows this relationship
using p values (because they are more clearly separated than the
q values). Although a correlation between p values and cluster
sizes is apparent, there are clear exceptions. For instance, strain
J64 in the Jou data has 36 isolates, but is ranked below J22 and
J20, which have cluster sizes 19 and 16, respectively. In general,
large cluster size could be attributable to the age of the strain
rather than rapid transmission. In the case of the W-Beijing
strain, which is known to be evolutionarily old (9, 13), our
analysis suggests that age is not the only factor that explains the

prevalence of this strain. That is, the W-Beijing strain has the
largest cluster in both the Soini and Jou data sets, and it is also
associated with very low p values and q values. Although the
W-Beijing strain is present in the Ferdinand data (F1), it is not
detected as an emerging strain in this case, which could be either
because the conditions (biological or otherwise) that make it an
emerging strain in some parts of the world are not present in
Madagascar, or because it only recently entered Madagascar and
has not yet generated a large number of cases.

The goal of identifying epidemiologically important strains has
been addressed for other diseases. For example, research into the
influenza virus has been able to identify codons in the hemag-
glutinin HA1 gene that predict the evolutionary success of a
strain by using genetic data without detailed epidemiological or
immunological information (14, 15). Broadly, the question ad-
dressed in this article of which strains will emerge and the
information used (genetic data alone) are similar to those of the
influenza studies. However, the two pathogens and the markers
used to identify them differ. Human influenza is commonly
typed by using sequences of a particular gene, whereas M.
tuberculosis is generally typed by using markers that produce
allelic data, giving ‘‘clusters’’ of identical genotypes. They also
differ in the process and rate of mutation. Instead of predicting
the evolution of the pathogen, as in studies of influenza (14, 15),
our method identifies tuberculosis strains that are currently
spreading significantly faster than the others.

In theory, our method can be applied to other pathogens
having appropriate properties. The pathogen must be clonal (or
the genetic marker must not undergo recombination among
different strains), and it must be possible to infer the direction
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of evolution of the marker locus. The mutation rate of the
marker must be high enough to generate diversity in the course
of an epidemic, but low enough to allow clusters of the same type
to be observed. In the case of M. tuberculosis, spoligotypes are
well suited to the application of this method. Although most
pathogens do not satisfy the above conditions, it may be possible
to use the principles presented here to develop similar methods
to study other diseases.

This study represents an attempt to construct a method of
identifying emerging strains of tuberculosis. Improvements
should become possible as understanding of the relevant bio-
logical processes develops. For instance, if more empirical
information about mutation at the spoligotype locus is gener-
ated, the mutation model could be appropriately refined. We
have modeled mutation rate as a simple linear function of copy
number. However, a different function, possibly nonlinear or
involving other parameters, may be more appropriate. Future
efforts might also focus on creating a more detailed model of
sampling. Addressing this challenge would probably require the
development of an alternative statistical approach.

The transmission model used in this study also has its limita-
tions. First, the exponential growth model does not strictly hold
in a population where the disease has become endemic. It does,
however, model the early stages of an epidemic and the growth
of those strains that have recently emerged. When the growth
dynamics are slower than exponential, the exponential model is
conservative in that it underestimates the number of cases in the
history of each strain. Thus, this procedure underestimates the
expected number of mutations, making it harder for the ob-
served number of mutations from a given genotype to be
significantly low. This effect is desirable because any false
discoveries produced by the procedure are then less likely to be
because of inaccuracies of the growth model. Second, it may be
possible to relax the deterministic assumptions of the transmis-
sion model. Whereas a stochastic model such as a birth–death
process would be more realistic, it has the problems of requiring
appropriate parameterization and estimation procedures. If
these problems are overcome, the result should be a more
conservative procedure. This conservatism is because the sto-
chasticity would lead to variance in the number of cases in the
history of a strain, which in turn increases the variance of D
(modeling the outdegree). Consequently, it would be harder to
reject the null hypothesis.

An inherent property of our approach to detecting emerging
strains is that any determination of emerging strains based on the
q values is specific to the context of the particular data set. The
q values for genotypes in different data sets do have the same
meaning in that they give the probability that a genotype
represents a false discovery. However, this approach does not
allow a comparison of the actual rates of transmission across
different data sets. For instance, a nonemerging strain in a data
set of rapidly spreading strains may have a higher transmission
rate than one identified as emerging among slowly spreading
strains. In other words, the measure of emergence is not
absolute, but relative to the data set. With this in mind, it may
be informative to examine the behavior of a strain of interest in
a variety of data sets, as illustrated in Fig. 1.

In terms of the applications of the method to the published
data, the reasons why strains differ with respect to transmission
rates are not straightforward. Although the differences may be
due to genetic variation among strains, other possibilities should
be considered. Any factors correlated with an emerging strain
(bacterial or host genes, environmental factors, or a combination
of such factors) could be responsible for the difference. That is,
the association of a given genotype with rapid spread could be
because of biological properties of the strain, or, for example, the
configuration of social networks underlying the transmission of
this strain. The consistent appearance of a particular strain as

emerging in different populations would diminish the force of
non-pathogen-related explanations. Indeed, multiple drug resis-
tance has been associated with the W-Beijing strain and may be
a pathogen-related factor contributing to the rapid spread of this
strain in more than one region (Fig. 2). See ref. 2 for discussion
on the possible factors contributing to the prevalence of the
W-Beijing strain. Regardless of the explanations for emergence,
the identification of genotypes associated with fast transmission
may be useful in directing strategies for control.

Methods
The Relationship Between Copy Number and Mutation Rate. The
analysis requires a set of spoligotypes of mycobacterial isolates,
together with information about the mutation process of the
marker. Spoligotypes undergo mutation through deletion events
that remove sequences corresponding to contiguous blocks in the
spoligotype pattern (8). We will assume that the overall mutation
rate for spoligotypes is proportional to copy number, where
‘‘copy’’ is used to mean the number of unique spacer sequences
present in the spoligotype. That is, we assume the mutation rate
is c� , where c is the copy number at the direct repeat locus and
� is the underlying rate per copy. The intuition here is that a
genotype with a high copy number has more opportunity for
deletion events to occur compared with a genotype with low copy
number.

To justify the assumption that the mutation rate of a genotype
is proportional to its copy number, we examined the possible
association between copy number and outdegree of each cluster,
averaged over a large sample (1,000) of IA forests (described
below). For this purpose we examined the data of Soini et al. (9),
the largest of the data sets used in this study (see Application of
the Model to Genotype Data). Applying the Kendall tau test, a
nonparametric correlation analysis, the tau value was 0.428,
which was highly significant, with a p value of �10�15.

The Transmission and Mutation Model. We assume that the number
of cases of the bacterial infection increases exponentially and
deterministically in a population. Mutation events at the marker
locus are assumed to occur stochastically because mutation
events are rare relative to transmission events. In the following,
we will consider the growth dynamics of a single strain. The data
from an outbreak represents a sample from the total population;
let f be the proportion of the infectious population sampled. We
assume that the sampling proportion is the same across all
strains. Let � be the transmission rate per infectious case of the
strain in question (that is, the number of new infectious cases per
individual infected with this strain per unit time).

Noting that the mutation process removes cases from a strain, the
number of individuals in a single strain as a function of time from
its origination is given by e(��c�)t. This model assumes that each new
mutation event produces a new genotype, and so there is no entry
into any established strain through mutation (the IA assumption).

Let H be the total number of cases in the history of a particular
strain from the time of its origin (including those in the present
population that have not been sampled). Let T be the time since the
strain arose through mutation. Let N be the number of cases of the
strain in the sample. Then

H � �
0

T

e���c��tdt �
�N � f �

f�� � c��
, [1]

because N � fe(��c�)T.
For a given strain whose genotype has copy number c, let D

be the number of mutation events experienced by the strain in
its history (i.e., from time 0 to T). Assume D � Pois(�), where
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� � c�H �
c(N � f )
f(� � c)

, [2]

with � � ���, the compound parameter describing the rate of
transmission relative to mutation. Because � depends on c and
�, different genotypes may experience mutation events at dif-
ferent rates. The random variable D models the number of other
genotypes in a sample to which the genotype in question could
have evolved through a single deletion event. Note that this
model assumes that sampling has no effect on the observed
degree associated with a genotype because we assume a ‘‘deter-
ministic’’ sampling scheme whereby a fixed fraction ( f ) of cases
are sampled.

Cluster Graphs of the Data and IA Forests. Now consider a data set
consisting of g genotypes. For each genotype i, let ni be its
cluster size (consider this to be an instance of the above
described N, and let its copy number be ci. We need to obtain
the number of other genotypes in the history of the epidemic
that i mutated to through a single mutation event. First, define
the cluster graph of the spoligotype data to be the graph whose
vertices are the genotypes in the sample and whose directed
edges represent possible single-step mutation events (which
are inferred from the pattern of deletions among the spoligo-
types) (16). In Fig. 3, we show an example of part of a cluster
graph using data from ref. 9. Under the IA assumption, a given
genotype can have, at most, a single inbound edge. Therefore,
it is necessary to consider collections of trees (forests) con-
sisting of an appropriate subset of edges of the cluster graph.
We call such forests, whose vertices are the genotypes and
which conform with the IA assumption, IA forests. There can
be many IA forests consistent with the data.

For a given IA forest F, let di be the number of other genotypes
in F that are connected to i through a single mutation event (the
outbound degree of genotype i). The quantity di is taken to be
an observation of the random variable D described above, whose
parameter for a particular genotype i is

�i �
ci�ni � f �

f�� � ci�
. [3]

The p Values and q Values of Strains. The next step is to find the
maximum likelihood estimate of the compound parameter � �

��� under the model and for a given IA forest and value of f. The
likelihood is given by

Lik��� � �
i�1

g

e��i
� i

di

d i!
. [4]

Note that whereas ni, ci, and di are obtained from the data, the
sampling proportion f is fixed and not estimated. This is
because any prior information about f should be used to set its
value. Not estimating f also allows alternative assumptions
about f to be examined. The maximum likelihood estimate �̂ of
� is obtained by numerically maximizing the logarithm of the
likelihood function with respect to �. Because Lik(�) is a
product over all strains, �̂ is an estimate of � based on all strains
in the data.

For a given genotype, we can now compute the probabilities
of observing at most di for D . These probabilities are the p values
arising from testing the null hypothesis that the observed di is
consistent with the model given �̂. The alternative hypothesis is
that the given strain has a higher � than the �̂ derived from the
whole data set. Then, for a given forest F,

P�Di � di�F� � �
j�0

di �ci�ni � f �

f��̂ � ci�
�j 1

j!
exp� �

ci�ni � f �

f� �̂ � ci�
� ,

[5]

and, summing over the set of all possible forests,

P�Di � di� � �
F

P�Di � di�F�P�F�. [6]

There are often many genotypes in a cluster graph with
multiple inbound edges, resulting in a large number of possible
IA forests. For instance, if the cluster graph contains 30
genotypes that each have two inbound edges, then there would
be over one billion possible IA forests. In fact, it is common
for genotypes to have more than two inbound edges. In
practice, we sample random IA forests from the set of possible
IA forests by randomly selecting a single inbound edge for each
genotype with multiple inbound edges. Assuming that each IA
forest is equally probable, we approximate the above p value
by averaging P(Di � di�F) across a large random sample of IA
forests (1,000 for each data set).

This procedure gives rise to g tests that must be corrected for
multiple testing. Because we are interested in identifying
potentially important strains, our strategy is to control the
false discovery rate, which is the proportion of significant tests
that are falsely rejected (17, 18), instead of a more traditional
approach controlling the familywise error rate. Using the
methods of Storey (18, 19) and the QVALUE software
package of Dabney and Storey (http:��faculty.washing-
ton.edu�jstorey�qvalue), we estimate the q value for each
strain. The q value of a strain is the positive false discovery rate
for the set of hypothesis tests when the significance level is set
to be the p value of the corresponding strain. A relatively low
p value (or q value) indicates that the strain has spread too fast
for many mutation events to have occurred. Another inter-
pretation of the q value is that it is the Bayesian posterior
probability of making an error when regarding a strain to be
significant (18).
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