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Abstract

In this paper we investigate non-central elements of the Iwahori-Hecke algebra of the symmetric group
whose squares are central. In particular, we describe a commutative subalgebra generated by certain
non-central square roots of central elements, and the generic existence of a rank-three submodule of the
Hecke algebra contained in the square root of the centre, but not in the centre. The generators for this
commutative subalgebra include the longest word and elements related to trivial and sign characters of
the Hecke algebra. We find elegant expressions for the squares of such generators in terms of both the
minimal basis of the centre and the elementary symmetric functions of Murphy elements.

2000 Mathematics subject classification: primary 20C08.

Introduction

In [5], we determined explicitly, for the centre of the Hecke algebra of type A, how
to express each element of the Q[q; q−1]-norm basis in [8] as a linear combination of
the elements of the Z[q; q−1]-minimal basis (see [4]). During our research for [5], we
were led naturally to the square of the element of the Hecke algebra corresponding to
the longest word in the symmetric group. This square, which arises in the definition
of certain norms, is well-known to be central, and to have an expression as a product
of Murphy elements, which follows from its analogue in the braid group. We derive
directly a corresponding expression as a weighted sum of elementary symmetric
functions of Murphy elements.

Motivated by recent conversations with John Murray, we have also investigated
what other non-central elements of the Hecke algebra might have squares that are
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central. An analogous study by Murray for the centre of the symmetric group algebra
in the modular situation appears in [12]. Results of a general nature arising from our
investigation can be found in Section 3, while more detailed specific cases are handled
in Section 4. The non-central elements we describe in Section 3 are closely related to
well-known central elements of the Hecke algebra, which are important in the study
of its representation theory. Together with the longest word, these elements span a
submodule contained inside the square root of the centre. As with the element of the
Hecke algebra corresponding to the longest word of the symmetric group, the squares
of these elements can be expressed as linear combinations of elementary symmetric
functions of Murphy operators together with the identity (Theorem 3.8).

1. Definitions

Let S = {s1; : : : ; sn−1} be the standard generators of the symmetric group Sn,
meaning that si = .i i +1/ as a permutation. We say an expressionw = si1 · · · sik ∈ Sn,
si j ∈ S, is reduced if k is minimal. In this case, we say the length ofw, denoted by l.w/,
is k. A partition of n is a composition whose components are weakly decreasing from
left to right. If ½ is a partition of n we write ½ � n. The conjugacy classes in Sn are
indexed by partitions of n.

There are two fairly standard and closely related sets of generators and relations
with which to define the Hecke algebra H := Hn of Sn . Let q be an indeterminate
and let R = Z[q1=2; q−1=2]. Then H is the associative R-algebra generated by the set
{Ts | s ∈ S} with identity T1 and subject to the relations:

T 2
s = qT1 + .q − 1/Ts; for s ∈ S;(1.1)

Tsi Tsi+1 Tsi = Tsi+1 Tsi Tsi+1; for 1 ≤ i ≤ n − 2;(1.2)

Tsi Ts j = Ts j Tsi for |i − j | ≥ 2:(1.3)

The algebra H is a free R-module with basis {Tw := Tsi1
· · · Tsir

| w ∈ Sn} where
w = si1 · · · sir is a reduced expression for w in Sn. We present most of the results in
this paper in terms of this set of generators and relations, and with respect to this basis
of H as a module. However, some results (Section 2) are more elegantly expressed in
terms of a normalised generating set {T̃s | s ∈ S}, defined by setting T̃s := q−1=2Ts.
If we set ¾ = q1=2 − q−1=2 then the new generators satisfy the braid relations (1.2)
and (1.3), but the order relation (1.1) becomes

(1.4) T̃ 2
s = T̃1 + ¾ T̃s :

We indicate corresponding elements and substructures of this normalised version of the
Hecke algebra by placing a tilde above them. For example, we denote the normalised
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Hecke algebra itself as H̃. Then H̃ is a free Z[¾ ]-module with basis {T̃w := T̃si1
· · · T̃sir

}
where w = si1 · · · sir is a reduced expression for w in Sn .

The symmetric group Sn has a symmetry best described as the graph automorphism
induced by reflecting the Dynkin diagram about its midpoint. If ²n : Sn → Sn is the
group automorphism defined by this symmetry then ²n.si/ = sn−i for 1 ≤ i ≤ n − 1.
This automorphism is naturally extended to an algebra automorphism of H, also
denoted ²n .

The centre Z of H is defined to be the set of elements c ∈ H such that ch = hc
for all h ∈ H. Throughout this paper we make frequent use of the ‘minimal basis’ for
Z given in ([4, 7]). This minimal basis {0½ | ½ � n} is an R-basis for Z and can be
characterized by the following two properties:

• 0½|q=1 = ∑
w∈C½

Tw, where C½ is the conjugacy class of cycle type ½ in Sn , and
• 0½ −∑

w∈C½
Tw contains no minimal length elements from any conjugacy class.

The corresponding class elements in H̃ are {0̃½ | ½ � n} with the characterizing
properties that 0̃½|¾=0 = ∑

w∈C½
T̃w, and that 0̃½ − ∑

w∈C½
T̃w contains no minimal

length elements from any conjugacy class. We have 0̃½ = q−l½=20½, where l½ is the
length of the shortest elements in C½.

Write wn for the longest word in Sn . Define ` := l.wn/ = ∑n−1
i=1 i , the length of the

longest word.
Define the Poincaré polynomial to be p.q/ := ∑

w∈Sn
ql.w/:

2. The square of the element in H̃ corresponding to wn

In this section we use the normalized version of the Hecke algebra H̃ to give an
explicit and surprisingly simple expression for T̃ 2

wn
.

We begin with some basic facts about Murphy elements.

DEFINITION 2.1. The Murphy operators or Murphy elements Ln;i of H are defined
by setting Ln;1 = 0 and

Ln;i = T.i−1 i/ + q−1T.i−2 i/ + · · · + q−.i−2/T.1 i/

= Tsi−1 + q−1Tsi−2si−1si−2 + · · · + q−.i−2/Ts1···si−1 ···s1

for i = 2; 3; : : : ; n.

By a symmetric function in a set of commuting variables, we mean a polynomial in
those variables that is unchanged by any permutation of the variables.

THEOREM 2.2 (Dipper-James [2] or Murphy [9]). The Murphy elements commute.
The symmetric functions in the Murphy elements are in Z.
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The following was shown by Dipper and James [2] when the Hecke algebra is
defined over a suitable field (such asQ.q1=2/), and by Francis and Graham [6] over R.

THEOREM 2.3 (Dipper–James [2], Francis–Graham [6]). The set of symmetric func-
tions in the Murphy elements in H is precisely Z .

The Murphy elements can be similarly defined in H̃ by setting L̃n;1 := 0 and
L̃n;i := T̃.i−1 i/+ T̃.i−2 i/+· · ·+ T̃.1 i/. Of course, the statement of Theorem 2.2 readily
translates to the normalised context.

The i-th elementary symmetric function in n commuting variables is the sum of
all monomials of length i in the variables whose exponents are at most 1. For
example, the second elementary symmetric function in the four variables x1, x2,
x3, x4 is x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4. Define ẽn;0 := T̃1, and for
i = 1; : : : ; n −1, let ẽn;i denote the i-th elementary symmetric function in the Murphy
elements L̃n;1; : : : ; L̃n;n.

PROPOSITION 2.4 ([6]). For i = 0; : : : ; n − 1, ẽn;i = ∑
l½=i 0̃½. Moreover, we have

the corresponding en;i = ∑
l½=i 0½.

COROLLARY 2.5. The set
{∑

l½=i 0½ | 1 ≤ i ≤ n − 1
}

generates Z over R.

Set M̃n;i := ²n.L̃n;i/ = T̃.n n−i+1/ + · · · + T̃.n−i+2 n−i+1/, for 1 ≤ i ≤ n. We call the
M̃n;i the dual Murphy elements. These elements also appear in [13, page 26].

For example, in S4

M̃4;1 = 0; M̃4;2 = T̃.4 3/ = T̃s3;

M̃4;3 = T̃.4 2/ + T̃.3 2/ = T̃s2s3s2 + T̃s2;

M̃4;4 = T̃.4 1/ + T̃.3 1/ + T̃.2 1/ = T̃s1s2s3s2s1 + T̃s1s2s1 + T̃s1:

These elements are ‘dual’ because if you add ‘down the columns’ instead of along
the rows you get the standard Murphy elements. That is, adding the first terms of each
element one has L̃4;4, adding the second terms gives L̃4;3, and adding the third terms
gives L̃4;2.

If you like, the i-th Murphy element ‘hangs down’ from i to 1, while the dual
version ‘grows up’ from n − i + 1 to n.

LEMMA 2.6.

(1)
∑n

i=1 M̃n;i = ∑n
i=1 L̃n;i .

(2) M̃i;i = M̃i−1;i−1 + T̃.1 i/ for i ≥ 2.
(3) T̃s1:::sn T̃sn :::s1 = T̃1 + ¾ M̃n+1;n+1.
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(4) For i = 0; 1; : : : ; n − 2, L̃n+1;n+1ẽn;i + ẽn;i+1 = ẽn+1;i+1. For i = n − 1 we have
L̃n+1;n+1ẽn;n−1 = ẽn+1;n.
(5) ²n.ẽn;i / = ẽn;i for i = 0; 1; : : : ; n − 1.

PROOF. (1) The sums on each side are equal to
∑

1≤i< j≤n T̃.i j/.

(2) This follows by definition of M̃i; j .

(3) This involves a straightforward induction on n using (2).

(4) These are elementary properties of symmetric functions in commuting variables.

(5) This also follows since ẽn;i is symmetric not only in the Murphy elements but
also in the si under ²n.

The following result (equation (2.1)) is stated in [14, Section 3] and [13, Section 6]
using an alternative definition of Murphy elements in H̃, defined by setting Ln;1 = 1
and Ln;i+1 = T̃siLn;i T̃si . It can be proved by induction on n, but is also a direct
consequence of looking at the Hecke algebra as a quotient of the Braid group algebra.
In the braid group, the square of the longest word is the ‘full twist’, and the Murphy
element Ln;i is the braid whose i-th string goes behind strings i − 1; : : : ; 1 and returns
in front of strings 1; : : : ; i − 1 to the i-th position. All other strings remain as in the
identity braid. It immediately follows that

T̃ 2
wn

=
n∏

i=1

Ln;i :(2.1)

In Theorem 2.7 we present an alternative expression for T̃ 2
wn

, which is a direct conse-

quence of (2.1) together with the relation Ln;i = ¾ L̃n;i + T̃1 (the proof of this relation
is elementary). We provide a direct independent proof here.

THEOREM 2.7. T̃ 2
wn

= ∑n−1
i=0 ¾

i ẽn;i .

PROOF. The proof is by induction on n. If n = 2, then

T̃ 2
w2

= T̃ 2
s1

= T̃1 + ¾ T̃s1 = ẽ2;0 + ¾ ẽ2;1

since ẽ2;1 = T̃s1 . Suppose the statement is true for n. Now wn+1 = s1 · · · snwn =
wnsn · · · s1. Also, it is clear that wnsn · · · s1 = sn · · · s1²n+1.wn/. So, using the fact that
²n+1 is an algebra automorphism,

T̃ 2
wn+1

= T̃s1:::sn T̃ 2
wn

T̃sn :::s1 = T̃s1:::sn T̃sn ···s1²n+1

(
T̃ 2
wn

)
= ²n+1

(Ln+1;n+1

)
²n+1

(
n−1∑
i=0

¾ i ẽn;i

)
by induction



214 Andrew Francis and Lenny Jones [6]

= ²n+1

((
T̃1 + ¾ L̃n+1;n+1

) ( n−1∑
i=0

¾ i ẽn;i

))

= ²n+1

(
T̃1 + ¾.L̃n+1;n+1ẽn;0 + ẽn;1/+ ¾ 2.L̃n+1;n+1ẽn;1 + ẽn;2/

+ · · · + ¾ n−1.L̃n+1;n+1ẽn;n−2 + ẽn;n−1/+ ¾ n L̃n+1;n+1ẽn;n−1

)
= ²n+1

(
T̃1 + ¾ ẽn+1;1 + ¾ 2ẽn+1;2 + · · · + ¾ n ẽn+1;n

)
= T̃1 + ¾ ẽn+1;1 + ¾ 2ẽn+1;2 + · · · + ¾ n ẽn+1;n;

as desired (the last equality is due to Lemma 2.6 (5), and the second to last due to
Lemma 2.6 (4)).

COROLLARY 2.8. In terms of class elements, T̃ 2
wn

= ∑
½�n ¾

l½ 0̃½:

PROOF. This is an immediate consequence of Theorem 2.7 and Proposition 2.4.

Lastly, we rewrite Corollary 2.8 over R.
Recall the transformations T̃s = q−1=2Ts and ¾ = q1=2 − q−1=2. So T̃ 2

wn
=

.q−`=2Twn /
2 = q−`T 2

wn
. We also have 0̃½ = q−l½=20½, and so

¾ l½0̃½ = q−l½=2.q1=2 − q−1=2/l½0½ = q−l½ .q − 1/l½0½:

Recall from Proposition 2.4 that en;i = ∑
l½=i 0½. Therefore, the statement of Corol-

lary 2.8 can be written as follows.

COROLLARY 2.9. T 2
wn

= q`
∑

½�n

(
1 − q−1

)l½
0½:

3. The square root of the centre of H

When n = 2 the algebra Hn is commutative, so we restrict our attention in this
section to n ≥ 3.

DEFINITION 3.1. The square root of Z , denoted
√

Z , is defined to be

√
Z := {h ∈ H | h2 ∈ Z}:

Clearly Z ⊆ √
Z . Also, Z 
= √

Z since Twn ∈ √
Z \ Z . The fact that Twn ∈ √

Z \ Z
is well-known and follows from the centrality of the square of the corresponding
longest element in the braid group (of which H is a quotient), where that square is the
full twist. In this section we define two additional elements, which we show are in

√
Z ,
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and together with Twn , generate a commutative subalgebra of H. In Theorem 3.8 we
give the forms of the squares of these elements.

We say an element v ∈ H is a right eigenvector for multiplication by h if hv = kv
for some k ∈ R. Left eigenvectors are defined similarly.

Recall the following well-known elements of Z :

x :=
∑
w∈Sn

Tw; y :=
∑
w∈Sn

.−q/`−l.w/Tw:

These elements were defined in [1, Section 3] and used to study the permutation
modules of H. They are widely used in the representation theory of H (see, for
example, [2, 3, 10], and [11]). The modules xH and yH are called the trivial and
alternatingH-modules, respectively. Analogous elements can be defined for parabolic
subalgebras of H. Both x and y are eigenvectors for the action of the generators of H
(Lemma 3.2 (1)), a property that they share with some other elements of

√
Z (see

Section 4).
The following result is well-known.

LEMMA 3.2.

(1) For any s ∈ S, Ts x = xTs = qx and Ts y = yTs = −y. Moreover, x and y are
central.
(2) xy = 0.
(3) x = ∑

½�n 0½ and y = ∑
½�n.−q/`−l½0½.

(4) x2 = p.q/x and y2 = .−1/` p.q/y.

We now define the elements x̄ and ȳ, and investigate their properties in the remainder
of this paper:

x̄ := x − Twn ; ȳ := y − Twn :

LEMMA 3.3. The following hold:

(1) x̄Twn = Twn x̄ ,
(2) ȳTwn = Twn ȳ,
(3) x̄Twn ; ȳTwn ; x̄ ȳ ∈ Z,
(4) x̄ ȳ = ȳ x̄ .

PROOF. The centrality of x and y from Lemma 3.2 (1) implies (1) and (2). Now
wn acts on the set S of generators of Sn via the graph automorphism ²n defined in
Section 1, and this action extends to the Hecke algebra level as follows (remembering
that l.swn/ = l.wns/ = l.wn/− 1 for any s ∈ S):

Twn Ts = T²n.s/T²n.s/wn Ts = T²n.s/Twn s Ts = T²n.s/Twn :
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Since Tsx = xTs ′ for any s; s′ ∈ S, we have in particular Tsx = xT²n.s/. Hence, for
any s ∈ S (using the fact that ²n is an involution), we have

x̄Twn Ts = x̄ T²n.s/Twn = (
x − Twn

)
T²n.s/Twn = (

xT²n.s/ − Twn T²n.s/

)
Twn

= (
Tsx − Ts Twn

)
Twn = Ts

(
x − Twn

)
Twn = Ts x̄Twn :

Therefore, x̄Twn ∈ Z . Similar arguments show that ȳTwn and x̄ ȳ are central, prov-
ing (3). Finally, the centrality of x implies ȳx = x ȳ, which together with (2) implies
(4), and the proof is complete.

PROPOSITION 3.4. The elements x̄ , ȳ, Twn are in
√

Z \ Z.

PROOF. As already mentioned, it is well-known that Twn ∈ √
Z \ Z . By Lem-

ma 3.2 (1), we have that x; y ∈ Z , from which we deduce that x̄; ȳ =∈ Z . Since
x2, y2, T 2

wn
∈ Z , and since Twn commutes with x̄ and ȳ (Lemma 3.3), it follows that

x̄2; ȳ2 ∈ Z .

REMARK. While x̄ + ȳ =∈ Z , some linear combinations of x̄ and ȳ are in Z (for
instance x̄ − ȳ), and all linear combinations of x̄ and ȳ are in

√
Z since x̄2; ȳ2; x̄ ȳ ∈ Z .

The following is an immediate consequence of Lemma 3.3 and Proposition 3.4.

COROLLARY 3.5. The R-submodule of H spanned by {x̄; ȳ; Twn} is contained in√
Z \ Z :

PROPOSITION 3.6. The elements x̄ and ȳ are not zero divisors.

PROOF. Suppose that x̄h = .x − Twn /h = 0 for some h ∈ H. Multiplying on the
left by x gives .x2 − xTwn /h = 0, and therefore, using Lemma 3.2 (1) and (4), we
have

(
p.q/ − ql.wn/

)
xh = 0. This gives xh = 0 since H is a free R-module, and

subtracting xh = 0 from .x − Twn /h = 0 we obtain Twn h = 0. Thus h = 0, since Tw
is invertible for all w ∈ Sn . The proof for ȳ is similar.

PROPOSITION 3.7. Let X be the R-subalgebra of H generated by {x̄; ȳ; Twn }.
Then X is commutative.

PROOF. This is immediate from Lemma 3.3.

REMARK. Since x̄ ȳTwn =∈ Z , we have that x̄ + ȳTwn =∈
√

Z . Hence, X 
⊆ √
Z .

This also shows that
√

Z itself is not a subalgebra of H. However, the set {x̄ a ȳbT c
wn

|
a; b; c ∈ N} ⊆ √

Z , and, in fact, all elements of X with even exponent sum are
central.
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Unfortunately,
√

Z (which includes Z ) is not even an R-module. Although we
have shown that all R-linear combinations of the elements x̄ , ȳ and Twn are contained
in

√
Z (Corollary 3.5), it is not true in general that other elements of

√
Z have this

property (see Section 4), and certainly unlikely that the sum of a non-central element
in

√
Z and an element of Z is in

√
Z .

REMARK. There are no subalgebras of H, which are contained in
√

Z , that contain
elements in

√
Z \ Z . This is because, for instance, if h ∈ √

Z \ Z , then h + h2 
∈ √
Z .

THEOREM 3.8. The squares of x̄ and ȳ can be expressed as linear combinations
of elementary symmetric functions of Murphy elements together with the identity.
Specifically,

x̄2 =
∑
½�n

(
p.q/− 2q` + q`−l½ .q − 1/l½

)
0½

=
n−1∑
i=0

(
p.q/− 2q` + q`−i.q − 1/i

)
en;i ;

and

ȳ2 =
∑
½�n

.−1/l½q`−l½
(

p.q/− 2 + .1 − q/l½
)
0½

=
n−1∑
i=0

.−1/iq`−i
(

p.q/− 2 + .1 − q/i
)

en;i :

PROOF. Immediately from the definition of x̄ and ȳ we have that

x̄2 = x2 − 2xTwn + T 2
wn
; and ȳ2 = y2 − 2yTwn + T 2

wn
:

The forms for x2, y2 and T 2
wn

from Lemma 3.2 (3) and (4) and Corollary 2.9, together
with Lemma 3.2 (1), then give that

x̄2 = p.q/x − 2q`x + T 2
wn

= (
p.q/− 2q`

)∑
½�n

0½ + q`
∑
½�n

(
1 − q−1

)l½
0½:

The expression for x̄2 in terms of {0½ | ½ � n} follows. The corresponding ex-
pression for ȳ2 is similarly derived. The expressions for both x̄2 and ȳ2 in terms of
{en;i | 0 ≤ i ≤ n − 1} follow immediately from Proposition 2.4.

4. Examples:
√

Z for H3 and H4

We have seen in Section 3 that the commutative subalgebra X of H generated by
{x̄; ȳ; Twn } is not contained in

√
Z . We see in the following examples that it is also

the case that
√

Z is not contained in X .
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4.1. H3. When n = 3 it is easy to check that, while the elements Ts1 − Ts2 and
Ts1s2 − Ts2s1 are in

√
Z , their span is not in

√
Z — unlike x̄3, ȳ3 and Tw3 = Ts1s2s1 .

However, they do have the interesting property that they are eigenvectors for the
multiplicative action of Z . This parallels a similar fact for x and y (Lemma 3.2 (1)).
Recall from Section 1 that {0.1;1;1/ = T1; 0.2;1/ = Ts1 + Ts2 + q−1Ts1s2s1; 0.3/ = Ts1s2 +
Ts2s1 + q−1.q − 1/Ts1s2s1} is an R-basis for Z . Then we have

0.2;1/.T1 − T2/ = .q − 1/.T1 − T2/; 0.2;1/.T12 − T21/ = .q − 1/.T12 − T21/;

0.3/.T1 − T2/ = −q.T1 − T2/; 0.3/.T12 − T21/ = −q.T12 − T21/:

PROPOSITION 4.1. When n = 3, every element in
√

Z \ Z can be written as a
Q.q/-linear combination of the following elements:

x̄3 := T1 + Ts1 + Ts2 + Ts1s2 + Ts2s1;

ȳ3 := T1 − q−1.Ts1 + Ts2/+ q−2.Ts1s2 + Ts2s1/;

Tw3 := Ts1s2s1; R4 := Ts1 − Ts2; R5 := Ts1s2 − Ts2s1 :

PROOF. Solving the system of equations created by evaluating

.a1T1 + a2Ts1 + a3Ts2 + a4Ts1s2 + a5Ts2s1 + a6Ts1s2s1/
2Ts

= Ts.a1T1 + a2Ts1 + a3Ts2 + a4Ts1s2 + a5Ts2s1 + a6Ts1s2s1/
2

for each s ∈ S = {s1; s2} yields the following two solutions:

{
a2 = a3; a4 = a5; a6 = q−1a3 + q−1.q − 1/a5

}
(4.1)

and {
a1 = −q − 1

2
.a2 + a3/+ q

2
.a4 + a5/

}
:(4.2)

The first solution, (4.1), characterizes the elements of Z : the relations given are
exactly those given by [4, Lemma 3.1]. Thus the elements of

√
Z \ Z must satisfy

equations (4.2). The elements {x̄3; ȳ3; Tw3; R4; R5} all satisfy these equations, and are
easily seen to be linearly independent. Thus they span a five-dimensional subspace of
the solution space, which itself has five dimensions (there are five free parameters).
Hence they span the solution space of (4.2).

COROLLARY 4.2. For any subset W of H, let 〈W 〉 denote the R-span of W . Then
〈{x̄3; ȳ3; Tw3; R4; R5}〉 ∩ Z3 = 〈{x3; y3}〉.

PROOF. This is immediate from common solutions to (4.1) and (4.2).
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The squares of these five square roots of central elements (using Theorems 3.8
and 2.7) are:

x̄2
3 = .2q2 + 2q + 1/0.1;1;1/ + .q + 1/20.2;1/ + .3q + 1/0.3/;

ȳ2
3 = q4.q2 + 2q + 2/0.1;1;1/ − q3.q + 1/20.2;1/ + q3.q + 3/0.3/;

T 2
w3

= 0.1;1;1/ + .1 − q−1/0.2;1/ + .1 − q−1/20.3/;

R2
4 = 2q0.1;1;1/ + .q − 1/0.2;1/ − 0.3/;

R2
5 = −2q20.1;1;1/ − q.q − 1/0.2;1/ + q0.3/:

Interestingly, we have the relation R2
5 = −q R2

4. It follows that the central element
given by R2

4 has at least four distinct square roots over C.q1=2/.

4.2. H4. As with H3, the algebra X generated by {x̄4; ȳ4; Tw4} does not contain all
elements of

√
Z \ Z . Motivated by the relationships among the elements x̄4, ȳ4 and

the eigenvectors of Z when n = 4, as well as the experience in H3, we have identified
several more elements of

√
Z by looking for eigenvectors of the multiplicative action

of class elements. The following are additional examples of square roots, which are
clearly non-central since the coefficients of the shortest elements of conjugacy classes
are not equal

R4 := q
(
Ts1s2 − Ts2s1 + Ts3s2 − Ts2s3

)+ .q − 1/.Ts1s3s2 − Ts2s1s3/

+ Ts1s2s1s3 − Ts1s2s3s2 + Ts2s3s2s1 − Ts1s3s2s1;

R5 := q2.Ts1 + Ts3/+ q.q − 1/.Ts2s1 + Ts2s3 + Ts1s3/+ .q − 1/2Ts2s1s3

− q.Ts1s2s1 + Ts2s3s2 + Ts1s2s3 + Ts3s2s1/

− .q − 1/.Ts1s2s1s3 + Ts2s3s2s1 + Ts2s1s3s2/+ Ts1s2s1s3s2 + Ts2s1s3s2s1;

R6 := q2Ts2 + q.q − 1/.Ts1s2 + Ts3s2/− q.Ts1s2s1 + Ts2s3s2 + Ts1s2s3 + Ts3s2s1 − Ts2s1s3/

+ .q2 − q + 1/Ts1s3s2 − .q − 1/.Ts1s2s3s2 + Ts1s3s2s1/+ Ts1s2s3s2s1 :

The set {x̄4; ȳ4; Tw4; R4; R5; R6} is linearly independent. While the elements
{x̄4; ȳ4; Tw4} commute with each other and with elements of {R4; R5; R6}, the ele-
ments of {R4; R5; R6} do not commute among themselves.

Unlike the H3 case, we cannot use a dimension argument here to prove that we
have all square roots. In fact, as the dimension of the algebra here is 24, it is rather
unlikely that this set spans all square roots.
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