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Abstract

Molecular techniques such as IS6110-RFLP typing and spacer oligonucleotide typing (spoligotyping) have aided in understanding the
transmission patterns ofMycobacterium tuberculosis. The degree of clustering of isolates on the basis of genotypes is informative of the extent of
transmission in a given geographic area. We analyzed 130 published data sets ofM. tuberculosis isolates, each representing a sample of bacterial
isolates from a specific geographic region, typed with either or both of the IS6110-RFLP and spoligotyping methods. We explored common
features and differences among these samples. Using population models, we found that the presence of large clusters (typically associated with
recent transmission) as well as a large number of singletons (genotypes found exactly once in the data set) is consistent with an expanding
infectious population. We also estimated the mutation rate of spoligotype patterns relative to IS6110 patterns and found the former rate to be about
10–26% of the latter. This study illustrates the utility of examining the full distribution of genotype cluster sizes from a given region, in the light of
population genetic models.
# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Tuberculosis remains a major global infectious disease,
causing around two million deaths each year. While traditional
epidemiological methods such as contact tracing are central to
attempts to contain tuberculosis, these are increasingly
complemented by use of data frommolecular typing techniques
(Small et al., 1994; Kodmon et al., 2006; Lari et al., 2005;
Quitugua et al., 2002; Chan-Yeung et al., 2003; Van Soolingen
et al., 1999; Mathema et al., 2006). DNA fingerprinting
methods have enabled the classification of isolates into distinct
strains, and thus the characterization of genetic diversity of
Mycobacterium tuberculosis in outbreaks (Nguyen et al., 2004;
Van Soolingen, 2001). The most commonly applied molecular
typing techniques are IS6110-restriction fragment length
polymorphism (IS6110-RFLP) (Eisenach et al., 1988), and

spacer oligonucleotide typing (spoligotyping) (Kamerbeek
et al., 1997). The former uses variability produced by
movement of the insertion sequence IS6110, while the latter
identifies the presence or absence of 43 DNA spacer sequences
located between repetitive units at the direct repeat (DR) locus.
The IS6110-RFLP and spoligotyping methods are sufficiently
discriminating to separate unrelated isolates, and yet the
resulting patterns are stable enough to allow closely related
isolates to be grouped (Niemann et al., 1999; Van Soolingen,
2001). The use of these typing techniques to study the
epidemiology of tuberculosis has now become widespread,
with over 150 papers appearing in 2006 alone that mention
IS6110 or spoligotyping (Fig. 1).

Clusters of identical or highly similar genotypes are widely
interpreted as resulting from recent transmission caused by a
single case. On the other hand, genotypes appearing uniquely
within a data set, named singletons from here on, are generally
considered to have arisen from migration or recent reactivation
of remotely acquired infections. In addition to transmission
rates, several other factors influence the patterns of clustering.
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These include sampling and the mutation rate of the molecular
marker used for fingerprinting (Tanaka and Francis, 2005). To
form conclusions about transmission from such data, it is
therefore necessary to develop an understanding of generic
features of distributions of cluster sizes, and the mutation rates
of different markers.

The infinite alleles model (IAM), developed in population
genetics, provides a theoretical framework for analyzing the
distribution of the number of copies of alleles in a sample. The
IAM describes the balance between mutation and random
genetic drift under the assumption of selective neutrality
(Ewens, 2004; Hubbell, 2001). By viewing molecular patterns
resulting from genotyping as alleles of a genetic locus, the IAM
can be applied as a baseline model to study bacterial variation.
To make this application, we equate within-host substitution –
that is, the combination of both mutation and fixation within the
host – with mutation of genotypes.

Here, we analyzed data extracted from 130 molecular
epidemiological studies of tuberculosis published in the
biomedical literature. With the exception of one set of globally
sampled isolates, each of these data sets represents a sample of
bacterial isolates collected from an outbreak in a specific
geographic area, and typed with either or both of the IS6110-
RFLP and spoligotyping methods. We explore common features
and differences between the data sets by applying the infinite
alleles model. With this model, we obtain a measure of the
genetic diversity in each data set, and use this measure to provide
estimates of themutation rate of spoligotype patterns. Finally, we
discuss the epidemiological implications of our findings.

2. Analysis of data using population genetic models

Of the 130 data sets forming the basis of this study, 64 report
the cluster size of every genotype represented in the data.

Others include less specific information, for instance, many
report only the total number of genotypes and the total number
of isolates (see Supplementary material for more information
about the data sets included in this study). Those data sets that
use both IS6110-RFLP and spoligotyping in their studies often
use spoligotyping to further discriminate the clusters corre-
sponding to low copy number IS6110 fingerprints. For such
data, we considered only one marker at a time to define the
clusters, in order to legitimately apply the IAM. In this section,
we investigate the suitability of the infinite alleles model to
explain the observed configurations of clusters by comparing
common features of the data with the prediction based on the
IAM (Section 2.2), as well as by using some established
statistical tests (Section 2.3).

2.1. The infinite alleles model and genetic diversity

The infinite alleles model is a well-studied population
genetic model describing the evolution of a population
undergoing mutation and genetic drift (Kimura and Crow,
1964; Ewens, 2004). The model assumes a constant population
size, that each mutation event results in a genotype never
encountered before and that all genotypes are selectively
equivalent. In this case, alleles correspond to the genotypes in
our data. Although a pattern that already exists in the
population can possibly be generated again through a new
mutation event, such events are likely to be relatively rare.
While in the case of IS6110, the probability of regenerating an
identical pattern would be extremely low, for spoligotypes, this
possibility is higher because there are fewer possible patterns.
However, the frequency of convergence (homoplasy) is still
likely to be low, because mutation occurs through deletion of
spacers, and the regeneration of a pre-existing pattern requires a
suitable parental genotype to exist and a specific deletion event
to occur in this potential parent. Under this model, the
distribution of genotype frequencies at equilibrium has been
well studied (Ewens, 2004; Kimura, 1983). A major advance
within the IAM framework was the analytical treatment of the
effects of sampling (Ewens, 2004), which is useful in the
context of tuberculosis data sets, where sample size is an
important consideration.

The fundamental parameter of this model is u ¼ 2Nem,
where m is the rate at which new genotypes arise per individual
per generation, and Ne is the effective population size. Ne is a
key parameter in population genetics representing the size of an
ideal population in which genetic drift operates at the same rate
as in an actual population. Ne is a measure of how readily a
population maintains genetic variation (see Ewens, 2004 for
more details). The parameter u is a measure of genetic diversity
in the population. A maximum likelihood estimator û for the
parameter u can be obtained from data using only the sample
size n and the number g of distinct genotypes in the sample (see
Ewens, 2004 for details). Note that cluster sizes are not needed
to compute û.

Fig. 2 shows the û values estimated from the 130 data sets
(76 using IS6110-RFLP and 54 using spoligotyping). The û
values obtained from the IS6110 and spoligotype data sets form

Fig. 1. Number of publications concerning IS6110-RFLP and spoligotyping

schemes in molecular epidemiology of tuberculosis. Data were obtained from
PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed).
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two overlapping but distinct distributions. The û values from the
IS6110 data have higher median and mean values (255.9 and
349.5, respectively) than those arising from the spoligotype
data (38.42 and 47.11, respectively). Because the parameter u
reflects the genetic diversity of a population (Ewens, 2004;
Hubbell, 2001), this result confirms that the IS6110 typing
scheme is more effective than spoligotyping in discriminating
M. tuberculosis strains (Kremer et al., 1999).

2.2. Features of cluster size distributions: large clusters
and singletons

A casual glance at a selection of data sets reporting cluster
sizes for individual genotypes reveals that most data sets
contain both a large number of genotypes represented by a
single isolate (singletons), and a number of genotypes with
significantly larger clusters than most. Natural questions
include whether the IAM explains these features and whether
they are useful indicators of the extent of tuberculosis
transmission.

We examine these features quantitatively. Let að jÞ be the
number of genotypes having cluster size j. Conspicuously large
cluster sizes (e.g., 15 isolates of a given genotype) appear in
many data sets, particularly in those using spoligotyping. These
large cluster sizes are almost always represented by a single
genotype (e.g., in the IS6110 data from Iran, að15Þ ¼ 1).
Define L to be the proportion of genotypes having unique
cluster sizes in the sample. That is,

L ¼ 1

g

Xm

j¼1

að jÞdað jÞ;1 (1)

wherem is the largest cluster size in the sample, g is the number
of distinct genotypes and dað jÞ;1 is the Kronecker delta function,

which equals 1 when að jÞ ¼ 1 and 0 otherwise. This quantity L
is used as a proxy for the proportion of large cluster sizes (the
tail of the distributions að jÞ; see Fig. 3 and comments below).
We computed the statistics að1Þ and L for each of the 64 data
sets that provide the full distribution of cluster sizes. The
number of singletons, að1Þ, is often higher in data sets typed
with the IS6110-RFLP scheme than in spoligotyping data.

Fig. 3 shows the distributions að jÞ for several data sets. The
number of genotypes að jÞ generally decreases with the cluster
size j. This general pattern of decline is similar across data from
different geographic regions and even across data using
different markers. The theoretical distribution conditioned on
the sample size n, according to the IAM, is (Watterson, 1974)

E½að jjnÞ% ¼ u

j

u þ n' j' 1
n' j

! "

u þ n' 1
n

! " : (2)

We can fit this function to the data shown in Fig. 3 by estimating
u as described in Section 2.1. This distribution exhibits the
general pattern of decline, but does not always describe the
large number of singletons and the presence of large cluster
sizes. Indeed, the definition of L (Eq. (1)) is intended to capture
the presence of large cluster sizes missed by the IAM (Fig. 3).
From Eq. (2), the expected number of singletons is
E½að1Þ% ¼ un=ðu þ n' 1Þ. This relationship between the num-
ber of singletons and the u values is evident in Fig. 4.

To explore further whether the IAM can account for these
statistics, we simulated samples under the assumptions of the
model and compared simulated statistics with the observed
values. We used the algorithm of (Hubbell, 2001, p. 291) to
simulate distributions of genotypes in samples according to the
IAM. This elegant algorithm uses the fact that in sampling a
sequence of n genotypes from a population that follows the
IAM, the probability that the ð jþ 1Þ th genotype is new to the
sample is u=ðu þ jÞ (see Ewens, 2004). Such a sample can be
obtained by drawing n random numbers from a uniform
distribution, and sequentially comparing each with the
probability given above. For each of the 64 observed data
sets, we generated 10,000 simulated samples (data sets) under
the IAM, using its estimated û value (described in Section 2.1).
Fig. 4 shows the relationship between û and each of the two
statistics of interest: L and að1Þ. The observed statistics are
shown with the average simulated values along with intervals
indicating the central 95% of simulated values. This figure
demonstrates that while the IAM is usually able to explain the
data with respect to these two statistics, close inspection reveals
that the IAM tends to underestimate the statistics. In extreme
cases, the observed values are far outside the 95% range of
simulated values.

Fig. 4 also shows that L decreases with û while að1Þ
increases with û. Together, these two trends imply that L and
að1Þ are inversely related. The relationships among û, L and
að1Þ are explained by noting that û is a measure of genetic
diversity in the population. When diversity is high (perhaps due
to a high mutation rate or a large effective population size) the

Fig. 2. Estimated values û of the parameter u from the 130 data sets (76 with
IS6110 and 54 with spoligotyping) considered in this work, ranked by û.
Diamonds represent the IS6110 subset, and ‘‘+’’ the spoligotype data sets.

Continuous horizontal lines represent the median values. The corresponding
upper and lower dashed lines represent the first and the third quartiles,

respectively.
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number of distinct genotypes, and therefore the number of
singletons, is also high. The scenario of high diversity would
also produce a scarcity of large clusters because mutation
events would break clusters down. Inversely, when diversity is
low, large clusters can appear.

2.3. Testing the infinite alleles model

While the above comparison of the actual data with
simulations based on the IAM gives some information about
whether a data set might be from a population satisfying the
assumptions of the IAM, formal statistical tests are available.
We applied two standard tests, which use different aspects of
the data, to assess whether the data are consistent with the IAM.
The Watterson–Ewens test (Ewens, 2004) and the exact test
described in Slatkin (1996a) have both been implemented and
made available on the internet (Slatkin, 1996b). Rejection of

the IAM may be due to the departure from selective neutrality
of genotypes or other assumptions of the IAM such as a
constant population size.

We tested the IAMfor each of the 64data sets (those providing
the full distribution of cluster sizes). We applied a method to
control the false discovery rate (Benjamini and Hochberg, 1995)
for the 64 data sets within each of the two test types, using a
significance level of 0.05. The IAMwas deemed to have failed if
either or both of the two tests resulted in rejection.That is, thenull
hypothesis was not rejected (the IAMwas accepted) if the model
was not rejected by either test, because each test accounts for a
different aspect of samples under the IAM. Interestingly, the two
tests disagreed in only three out of the 64 data sets. In all three
cases Slatkin’s exact test rejected the IAM. The full results of
both tests are reported in Supplementary material.

The IAM failed in 53 (82.8%) of the 64 genotype
distributions. Among the data sets for which the IAM failed,

Fig. 3. Plot of the natural logarithm of the number of genotypes against cluster size, for data from different geographic areas and using different genotype markers. In

each panel, the symbols represent observed data while the curves represent the expected að jÞ under the IAM. Top left panel, two genotype distributions typed with the

IS6110 marker; data from Italy (Lari et al., 2005) and the United States (Small et al., 1994). Top right panel, two cluster size distributions obtained with the
spoligotyping scheme; data from Iran (Farnia et al., 2006) and Hungary (Kodmon et al., 2006). Bottom left panel, two cluster size distributions from the same sample

of isolates genotyped with both IS6110 and spoligotyping; data from Italy (Lari et al., 2005). Bottom right panel, a sample of isolates collected in Hungary (Kodmon

et al., 2006) typed with both methods.
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the two statistics (number of singletons, að1Þ and the large-
cluster proportion L) tend to be underestimated by the model,
and sometimes very strongly so. In contrast, among all data sets
for which the IAM was accepted, the observed values of these
statistics lay within the central 95% intervals of the simulations.
For example, the IAM failed for the spoligotyping data from
Poland (Sajduda et al., 2004) and India (Suresh et al., 2006)
which exhibited a strong discrepancy between observed and
simulated values. In contrast, the IAM was not rejected for the
IS6110 data set from Italy (Tuscany) (Lari et al., 2005) and the
spoligotyping data set from Hungary (Kodmon et al., 2006)(see
also Fig. 2), and both L and að1Þ accord with the expectations of
the IAM. There is general agreement between the formal
approach of this section and the examination of the two
statistics in Section 2.2. Namely, the data sets for which the
IAM does not fail have að1Þ and L values within the central
95% interval of the simulated values. Of the 53 data sets for
which the IAM is rejected, 24 (45.3%) data sets have að1Þ
values outside the simulated central 95% interval, and 10
(18.9%) have L values outside this range. Eight of the
aforementioned 53 data sets (15%) have both að1Þ and L values
outside the central 95% interval of the simulated values. Of the

34 instances for which a statistic took a value outside the central
95% interval, 31 were above this central interval, confirming
the observation that under the IAM the proposed statistics are
almost always underestimated.

2.4. An alternative model with expanding population size

In this section, we further investigated cluster size
distributions using a model that does not constrain the
population size to be constant (Tanaka et al., 2006a). We
focused on one population from the United States (San
Francisco, CA) (Small et al., 1994) for which the IAM was
rejected. This data set is of particular interest because the
population parameters under a model of growing size have been
estimated using approximate Bayesian computation (Tanaka
et al., 2006a). Those estimates indicate that the data from this
outbreak can be explained by a growing population of
infectious individuals.

The alternative process we used is a stochastic model of
transmission and mutation, which we will refer to as the birth–
death-mutation (BDM) model. This model is an extension of
the linear birth–death process in that it includes mutation and

Fig. 4. Comparison of IAM simulations with the 64 data sets for which the complete genotype frequency distribution for each cluster size is available. Upper panels:

plots of observed and IAM simulated values of the proportion of unique cluster sizes, L, against the natural logarithm of û values. Bottom panels: plots of the observed
and simulated values of the number of singletons, að1Þ. Left panels: data sets typed with IS6110 (23 data sets). Right panels: data sets typed with spoligotyping (41
data sets). Error bars indicate the central 95% of simulated values. The bottom left panel excludes two data sets, the United States (Driver et al., 2006)(observed 1535,

simulations 1321.4) and Mexico (Quitugua et al., 2002)(observed 506, simulations 386.4).
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tracks the number of infectious individuals of different
genotypes. This model, like the IAM, assumes selective
neutrality of genotypes and that each mutation event produces a
new genotype. The population can grow from new infections,
diminish in size due to death or recovery and produce new
genotypes through mutation (Tanaka et al., 2006a).

We used the parameters previously estimated to compare
samples simulated under the BDM to those of the IAM. Table 1
gives the observed distribution of cluster sizes and the
simulated distributions of the IAM and BDM models. We
ran the IAM simulation 10,000 times to estimate the expected
cluster sizes āIAMð jÞ, and the BDM simulation 3,000 times to
estimate the corresponding expected cluster size distribution
āBDMð jÞ (using only the 2127 simulations that did not result in
extinction of the infectious population). We also provide
intervals covering the central 95% of simulated cluster size
frequencies. The BDM successfully describes the observed
distribution aOBSð jÞwith the exception of the cluster size j ¼ 2
(in this case, only 5 out of the 2,127 simulations gave rise to a

value less than or equal to the observed value of aOBSð2Þ ¼ 20).
By contrast, the IAM-generated distribution reveals a strong
departure from observations. In particular, the large clusters and
singletons observed in the data were not generated from the
simulations with the IAM.

Finally, we note that the analysis of this section represents an
initial qualitative examination rather than a formal comparison
of the two models. The BDM has two more parameters than the
IAM and is thus expected to fit the data better. A more thorough
analysis would require treating both and perhaps other models
within the same statistical framework, which is beyond the
scope of this paper.

3. Estimates of the relative mutation rates

One by-product of the estimation of u for each data set is that
by considering these values for each marker (as in Fig. 3), an
estimate of the ratio of the mutation rates of IS6110 and
spoligotype markers can be computed. As noted above, the
parameter u is proportional to the mutation rate m and to the
effective population number Ne. The latter is unrelated to the
molecular typing methods and depends on the particular history
and other properties of the population. To estimate the ratio of
the two mutation rates, we assume that the distributions of Ne

values (which are unknown) arising from the two subsets of
data defined with IS6110 and spoligotype markers have
identical mean or median values. We then take the ratio of the
means and medians.

Although differences in sample size distributions between
IS6110 and spoligotype data sets may conceivably affect
estimates of u and therefore the estimate of the relativemutation
rates, an examination of the sample sizes removes this concern.
Because the sample size distributions for the two markers are
not normal, a Wilcoxon rank sum test was used to assess
whether the distributions of the sample sizes differ. This test
returned a p-value of 0.1336, indicating that the distributions of
sample sizes do not affect the comparison of the u estimates
between IS6110 and spoligotype-based studies.

We took several approaches to estimate the relative mutation
rate of spoligotypes with respect to IS6110, summarized in
Table 2. First, we used all 130 data sets. In the second approach
we formed a subset of the data sets in which each geographic
region was represented at most once for each kind of marker (70
in total). Third, we considered those data sets for which both
IS6110 and spoligotyping were applied to the same sample, and
each geographic region was represented at most once (16
samples giving 32 data sets). For these data sets we take the
mean of the ratios of û rather than the ratio of the means,
because the effective population size Ne is the samewithin each
pair of samples. Hence, this procedure does not make any
assumptions about the values of Ne. In the fourth method we
considered the 11 data sets for which the IAM was not rejected
(see Section 2.3). The fifth method applied restrictions from
both the second and fourth methods (each geographic region
chosen at most once per marker and IAM not rejected) to
consider a subset of six data sets. The estimates based on the
most restricted subsets in Table 2 are perhaps the most accurate

Table 1

Observed cluster sizes from Small et al. (1994) and simulated cluster size
frequencies according to the IAM using 10,000 runs and BDM using 2127 runs

Size ( j) aOBSð jÞ a āIAMð jÞ b IAM 95% c āBDMð jÞ d BDM 95% e

1 282 236.7 [211, 262] 266.4 [241,293]
2 20 55.4 [43, 69] 35.7 [25, 47]

3 13 19.0 [12, 27] 10.4 [4, 17]

4 4 7.7 [3, 13] 4.4 [1, 9]

5 2 3.2 [0, 7] 2.3 [0, 5]
6 0 1.5 [0, 4] 1.4 [0, 4]

7 0 0.71 [0, 3] 0.87 [0, 3]

8 1 0.35 [0, 2] 0.63 [0, 3]

9 0 0.20 [0, 1] 0.46 [0, 2]
10 1 0.10 [0, 1] 0.36 [0, 2]

11 0 0.05 [0, 1] 0.25 [0, 1]

12 0 0.02 [0, 0] 0.23 [0, 1]

13 0 0.01 [0, 0] 0.17 [0, 1]
14 0 0.01 [0, 0] 0.15 [0, 1]

15 1 0.004 [0, 0] 0.13 [0, 1]

16 0 0.002 [0, 0] 0.11 [0, 1]
17 0 0.0005 [0, 0] 0.08 [0, 1]

18 0 0 [0, 0] 0.08 [0, 1]

19 0 0 [0, 0] 0.06 [0, 1]

20 0 0 [0, 0] 0.06 [0, 1]
21 0 0 [0, 0] 0.06 [0, 1]

22 0 0 [0, 0] 0.05 [0, 1]

23 1 0 [0, 0] 0.06 [0, 1]

24 0 0 [0, 0] 0.04 [0, 1]
25 0 0 [0, 0] 0.04 [0, 1]

26 0 0 [0, 0] 0.04 [0, 1]

27 0 0 [0, 0] 0.04 [0, 1]
28 0 0 [0, 0] 0.03 [0, 1]

29 0 0 [0, 0] 0.03 [0, 1]

30 1 0 [0, 0] 0.03 [0, 1]

> 30 0 0 [0, 0] 0.42 [0, 1]

a Observed cluster size distribution.
b Mean simulated frequencies under the IAM.
c Interval covering the central 95% of values obtained in the simulations using

the IAM.
d Mean simulated frequencies under the birth–death-mutation model.
e Interval covering the central 95% of values obtained in the simulations using

the birth–death-mutation model.
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(methods three, four and five). The values from method four
and five are close to the value obtained in Tanaka and Francis
(2005) (13.5%) which was based on a single global sample of
genotypes. We conclude that the mutation rate of spoligotypes
is likely to be around 10% to 26% of the mutation rate of
IS6110.

4. Discussion

This study offers a new perspective, based on population
genetic models, for the interpretation of molecular epidemio-
logical data. We investigated 130 published data sets of M.
tuberculosis isolates that were genotyped with IS6110-RFLP
and spoligotyping methods, and identified common features
and differences between the data sets. The pattern of decline in
frequency against cluster size is remarkably similar across data
sets from different regions, as well as across data sets typed
with the two different markers. This decline is described well
by the infinite alleles model (Fig. 4). By examining the full
distributions of cluster sizes in a given data set, we observe that
the number of singletons and the weight of large clusters are
often distinguishing features of individual data sets. The
application of population models shows that these two statistics
are informative of the epidemic state of a population. In
particular, the presence of many singletons and large clusters
may signal a growing population. The result about the
information carried by singletons may be counter-intuitive
but can be understood as follows. For any sample, the IAM
specifies an effective population size and an expected number
of singletons. If the population is growing, its effective
population size is lower than the actual population size near the
time of sampling. Thus, since many new genotypes will have
been created in recent history, the observed number of
singletons is likely to be greater than the expected number
under the IAM.

We have raised the possibility of using tests of the infinite
alleles model to discern whether an infectious population is
expanding. When the IAM is rejected, there are multiple
plausible explanations. For instance, rejection is often taken to
indicate the presence of natural selection, by which some
strains are favored over others. We cannot discount this
possibility, and indeed a method has recently been proposed for
detecting inter-strain differences in transmission using spoli-
gotype data (Tanaka and Francis, 2006). It may be tempting to
automatically attribute differences in cluster size in a given data

set to differences in transmissibility of strains. However, the
acceptance of the IAM in some data (11 out of 64 in this study)
demonstrate that there is often no support for such an untested
inference. Even when the IAM is rejected, population growth
rather than selection may be at work. As we have shown in
Section 2.4, a model with an expanding infectious population is
able to explain the San Francisco data without requiring
selection. That is, the range of observed cluster sizes could be
the result of the interplay between mutation and drift in a
population. Hence, a large cluster may simply be due to having
arisen early and persisted to the present time. We conclude that
the three features together: the failure of the IAM, a large
number of singletons and the presence of large cluster sizes
suggest – but do not imply – an expanding population.

The extent of recent tuberculosis transmission is often
quantified using closely related statistics measuring the
proportion of clustered cases (Alland et al., 1994; Small
et al., 1994; also known as the recent transmission indices or
RTIs). Although we do not intend our singleton and large
cluster statistics to replace the RTI, we remark on the
relationship between these statistics. As noticed in Tanaka
and Francis (2005), the RTIn index can be expressed as 1'
að1Þ=n where að1Þ is the number of singletons (unique
genotypes) and n is the sample size. Therefore, given a fixed
sample size n, the ordering of the data sets according to the RTIn
is the reverse of the ordering based on the number of singletons
að1Þ. This reverse ordering appears to contradict the notion that
both statistics indicate the extent of transmission. However, the
number of singletons needs to be considered in the context of
the IAM and the sample size n. One way to use the number of
singletons for the purposes of quantifying transmission would
be to standardize it using the expectation and variance of að1Þ
under the IAM. This may be an interesting area to explore
further, although summary statistics may be insufficient to
measure the degree of transmission with accuracy (Tanaka
et al., 2006b). Ultimately, statistical approaches based on
explicit population models are likely to be more informative
about the transmission dynamics underlying a particular data
set (Sisson et al., 2007).

We remark that geographic regions with high rates of
tuberculosis transmission should be those with low diversity.
Quantitatively, this implies that û should be negatively
correlated with the incidence of tuberculosis — an implication
confirmed using incidence data from (Dye et al., 1999; World
Health Organization, 2005). In the case of IS6110, this

Table 2
Estimates of the relative mutation rate of spoligotypes compared to that of IS6110, obtained from the u estimates

Data source of estimates Data sets Ratio of means Ratio of medians

All data sets 130 0.135 0.150

Each region represented at most once for each marker 70 0.186 0.205
All in which both IS6110-RFLP and spoligotyping schemes were applied

and each region was represented at most once

16 0.255 a 0.265 a

All in which IAM not rejected 11 0.169 0.202

Each region represented at most once for each marker + IAM not rejected 6 0.118 0.102

a These estimates were calculated using the mean or median of the ratios of the pair of û values for each data set. See text for details.
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correlation is statistically significant (Kendall’s t ¼ '0:245;
p' value ¼ 0:00206; CI ¼ ð'0:090;'0:399Þ). We cannot
explain the lack of strong negative correlation in the case of
spoligotype data, but it may be due to the relatively low
diversity of spoligotypes stemming from a lower underlying
mutation rate. Thus, the inverse of û is itself another measure of
the degree of transmission, although its effectiveness for this
purpose is unknown.

A further outcome of our comparative study has been the
estimation of the relative mutation rate of spoligotype patterns
compared to IS6110. Note that here, ‘‘mutation’’ refers to the
within-host substitution of genotypes (the combination of both
mutation and fixation within the host). The arguments of
Section 3 yield an estimate of the ratio to be around 10% to
26%. Taking a mutation rate associated with IS6110 of 0.2 per
case per year (Tanaka et al., 2006a, 2004), the mutation rate of
spoligotypes is approximately 0.020 to 0.052 per case per year.
Because the mutation rates of markers are a crucial factor in
determining the configuration of cluster sizes in a population
(and sample), it is essential to have some knowledge of these
rates. In particular, estimates of mutation rates can be used in
models for simulating molecular epidemiological data.

A summary of the epidemiological implications of our
analysis is as follows.
1. Our study represents the application of tools from population

genetics to molecular epidemiology data, in a way not
previously done. This provides a different perspective,
enabling the potential development of new methods.

2. We outline an approach to the analysis of molecular data
obtained using spoligotypes or IS6110 applied to tubercu-
losis data:

Molecular epidemiological data can be analyzed by
testing the IAM.
(a) If the IAM is not rejected, then the infectious population

is probably not expanding.
(b) If the IAM is rejected, a likely cause is population

expansion. Alternatively, there could be selective
differences among strains.
i. To measure the rate of population growth, one can
estimate growth parameters explicitly through statistical
methods, such as computational Bayesian analysis
(Tanaka et al., 2006a).

ii. Testing for selection is a more delicate problem that
cannot be easily resolved. However, in the case of data
obtained using spoligotyping, differences between
strains can be detected using the method of Tanaka
and Francis (2006). Such differences may indicate
selection. It would be helpful to develop methods to
differentiate between selection and population growth
using molecular epidemiological data of this kind.
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