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Abstract

We present an approach for detecting, classi-
fying and recognising novel non-verbal sounds
on an Aldebaran Nao humanoid robot. Our
method allows the robot to detect novel sounds,
classify these sounds, and then recognise future
instances. To learn the names of sounds, and
whether each sound is relevant to the robot,
a natural speech-based interaction occurs be-
tween the robot and a human partner in which
the robot seeks advice when a novel sound is
heard. We test and demonstrate our system
via an interactive human-robot game in which
a person interacting with the robot can teach
the robot via speech the names of novel sounds,
and then test the robot’s auditory classification
and recognition capabilities by providing fur-
ther examples of both novel sounds and sounds
heard previously by the robot. The implemen-
tation details of our acoustic sound recognition
system are presented, together with empirical
results describing the system’s level of perfor-
mance.

1 Introduction

For most people, hearing plays an important role in ev-
eryday life. While hearing is crucial for understanding
speech, non-verbal sounds are also a valuable source of
perceptual information, directing our attention and mo-
tivating behaviour - for example, a knock on the door,
the ring of a telephone, or the screech of car tyres. Con-
versely, many sounds we learn to ignore though habitu-
ation, such as those caused by distant traffic or a ticking
clock. Likewise, for robots to move from factory floors to
mainstream environments such as domestic households
or the office, they will need to be capable of classify-
ing, recognising and discriminating between the variety
of novel sounds that will inevitably occur in such en-
vironments. For robots, many sounds will be worthy

of the robot’s attention and should trigger an appropri-
ate response, such as a spoken command or a fire alarm.
However, as is the case with people, many sounds should
be ignored by the robot.

Understandably, most research in robot perception
has focused on vision systems and mapping the robot’s
environment, thus allowing robots to detect people, ob-
stacles, and other important objects. Comparatively lit-
tle attention been paid to developing robot auditory per-
ceptual systems, with the notable exception of speech
recognition systems. Auditory perception can allow
robots to perceive important aspects of their environ-
ment that are undetectable to visual perception systems
due to visual occlusion or low light, such as a knock on
the door or the ring of a telephone. For robots to be
useful assistants and companions in our everyday lives,
the ability to hear as we do will be critical.

In this paper we present an approach for detecting,
classifying and recognising novel non-verbal sounds on
an Aldebaran Nao humanoid robot. Our method allows
the robot to autonomously detect novel sounds, clas-
sify these sounds, and then recognise future instances.
We demonstrate and test our system via an interactive
human-robot game in which a person interacting with
the robot can teach the robot via speech the names of
novel sounds, and then test the robot’s auditory classifi-
cation and recognition capabilities by providing further
examples of both novel sounds and sounds heard previ-
ously by the robot.

This paper is structured as follows: Section 2 outlines
the benefits of developing auditory perception systems
for autonomous robots. Section 3 describes common
approaches to sound detection and sound classification.
Section 4 presents literature related to robot hearing. In
Section 5 we describe our approach, how it differs from
existing approaches, and detail our implementation. Sec-
tion 6 describes our experimental setup, and Section 7
describes our empirical results. Finally, in Section 8 we
discuss the implications of our work, its limitations, and
possible future avenues of research and development.
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2 Background

Auditory perception, or “machine hearing” [1], is an
emerging field of research focusing on the perception of
non-verbal sounds. Machines hearing aims to endow ma-
chines with abilities such as distinguishing speech from
music and background noises, to determine the direction
from which a sound originates, and to learn and organise
knowledge regarding sounds that have been experienced
by the machine.

Sound recognition can offer a diverse range of applica-
tions and benefits for autonomous robots, from security
and surveillance to health care and domestic assistance.
For example, a security robot could respond to the sound
of breaking glass or footsteps; a health care robot could
hear a person crying or falling over and provide care; a
domestic robot could respond to a knock at the door or
the ring of a telephone. Coupled with auditory locali-
sation, it is possible for robots to have active listening
and thus move towards the source of a sound allowing
multimodal perception.

Sound recognition can also provide feedback to the
robot during physical manipulation tasks. Many com-
mon home appliances provide sound feedback to increase
their ease-of-use, i.e. a successful button press results in
a “click”. Beeps, bells, buzzers and simple melodies are
all purposefully designed as sources of feedback on many
household appliances such as microwaves, dishwashers,
and washing machines. Conversely, the lack of sound
can also indicate a problem that requires further investi-
gation. When a person turns they key in a car’s ignition
they expect to hear engine noise - the lack of engine noise
is indicative of a problem with the car’s engine. Surpris-
ingly, to date there has been little leverage by robots of
auditory feedback to improve task performance.

While perceiving the source of sounds comes naturally
to people, for robots sound classification and recognition
is not trivial. On one hand, two different objects can pro-
duce similar sounds. Conversely, real-world events from
the same object can produce different sounds. Moreover,
for naturally occurring sounds, the auditory signature of
multiple instances of the “same” sound will have a de-
gree of natural variation. For example, each bark from
the same dog may have a similar acoustic signature, but
no two barks will be identical. Furthermore, the location
of the sound source relative to the robot will affect the
sound’s acoustic signature. Consider a stapler - the au-
ditory signature of the stapler depends upon which part
of the stapler body is depressed and on what surface is
it is resting upon [3]. While human beings can easily
categorise these variations in sound as belonging to the
same object, for robots this a very difficult task.

3 Problem Domain

Sound recognition for robot hearing is relatively new
in comparison with automatic speech recognition (ASR)
and sound source localisation. In contrast to many ASR
systems in which a continuous audio stream is processed,
a typical acoustic event recognition system involves an
audio detection module to isolate relevant sounds from
background noise, and then a classification module iden-
tifies sounds from the discrete isolated sound events.
This is especially the case for robotic systems, since the
direct continuous analysis of the audio stream is pro-
hibitive in terms of computational load [5]. Thus a typ-
ical acoustic event recognition system is composed of
three main processes:

e Detection, which involves finding the start and end
points of a sound from a continuous audio stream.

e Feature extraction, which involves extracting rele-
vant and identifying features from an audio signal.

e Pattern classification, which compares the features
of a current sound to previously trained models for
identification.

3.1 Sound Detection

Detecting a sound is the cornerstone for any sound recog-
nition and classification problem. Sound detection refers
to a process which accepts a stream of audio data, gener-
ally in the form of buffers of samples and then determin-
ing from these buffers whether or not a sound is present.
A sound detection process should be able to find both
the start and end of a sound from these buffers. When a
sound is detected in an audio buffer, the buffer will then
be passed to a separate process for classification and/or
recognition. Standard sound detection techniques are
based on thresholding off the mean signal energy [5;
7].

3.2 Feature Extraction

One of the most common approaches from speech recog-
nition for extracting features from an audio signal
are Mel-Frequency Cepstrum Coefficients [9] (MFCCs),
which represent the short-term power spectrum of a
sound, based on a linear cosine transform of a log power
spectrum on a nonlinear mel scale of frequency. MFCCs
are also common in speaker recognition, which is the
task of recognising people from their voices. Another
common approach is Perceptual Linear Prediction (PLP)
[10] which likewise modifies the short-term spectrum of
the speech by several psychophysically based transfor-
mations which preferentially weight and threshold the
original spectrum based on a model of the human audio
perceptual system. These extracted features are then
used to train Hidden-Markov Models [13], Gaussian Mix-
ture Models [14], or Support Vector Machines [15]. The
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learned models can then be used for detecting the learned
signal in new audio data.

4 Related Work

For robots, machine hearing has the additional con-
straints of using the robot’s on-board sensors and being
processed in real-time using the robot’s limited process-
ing power. Most work related to robot hearing has fo-
cused on speech recognition and audio localisation [11].
However, there have been a few examples of audio event
detection with robots. For example, Kraft et al. [8]
developed a kitchen sound recognition system for a mo-
bile robot using a novel feature extraction method based
on Independent Component Analysis [16] (ICA). Their
method learns ICA basis functions over a multi-frame
window of features; these functions capture inter-frame
temporal dependencies in an efficient manner. They
compared their approach to MFCCs and found temporal
ICA is a better feature set for describing kitchen sounds.
However, their sound recognition system was not actu-
ally implemented on-board the robot.

Wu et al. [4] develop a home surveillance robot that
utilises both audio and visual information. Their su-
pervised learning approach involves the use a dataset of
both “normal” sounds (e.g. speech, doors opening and
closing) and “abnormal” sounds (e.g. gun shots, glass
breaking, crying and groaning). Mel frequency cepstral
coefficients (MFCC) are used to extract features from
the audio data. The features are in turn used as input
to a support vector machine classifier for analysis. They
report an 83% recognition rate for abnormal sounds that
are played through a speaker (as opposed to naturally
occurring in the robot’s environment).

Romano et al. [3] have released “ROAR” - ROS Open-
source Audio Recognizer. ROAR is a toolkit for ROS
(Robot Operating System), which allows for offline man-
ual supervised learning of audio events. The ROAR
toolkit is composed of two parts, one for learning au-
dio events and one for detecting them. Features are ex-
tracted using Perceptual Linear Prediction (PLP) [10].
The result of the PLP processing is a set of autoregres-
sive coefficients that encode perceptually salient infor-
mation about the analyzed signal. A custom piece of
software - the “ROAR Trainer” allows the user to se-
lect regions of the audio signal they wish to learn using
a computer mouse. Examples are then classified using
one-class support vector machines (OCSVMs). Romano
et al. evaluate their toolkit using a stapler, drill, phone
alarm and velcro. Romana et al. show through imple-
mentation on a robotic arm how combining contextual
information with a set of learned audio events yields sig-
nificant improvements in robotic task-completion rates.

Swerdlow et al. [6] presents a system that is trained
to detect kitchen sounds using a robot with a six micro-

phone array based on Gaussian Mixture Models in corre-
spondence with the MFCCs as acoustic signal features.
Furthermore, a Universal Background Model (UBM) is
used for the special case of speaker identification. Speech
data was recorded from ten speakers and five kitchen
appliances (a coffee grinder, a toaster, a bread cutter, a
hand-held blender, and a household electric coffee ma-
chine). They examined how the length of the training
phase and the minimum data length affected recognition
rates.

Janvier et al. [5] also enabled a Aldebaran Nao hu-
manoid robot to detect kitchen sounds. Unlike other ap-
proaches which use MFCCs and PLPs, Janvier et al. use
the stabilized auditory image (SAI) representation [12],
which is a time-frequency sound representation close to
a correlogram. The auditory images are then mapped
into a vector space of reduced dimension, and a vec-
tor quantization technique is used to efficiently map the
SAI representation in a feature space. An offline training
phase learns prototype vectors from a set of audio data
recorded with a humanoid robot in a house. The pre-
recorded audio consisted of 12 sound classes, each with
7 examples from 3 different positions, thus resulting in
a training set of 21 examples for each of the 12 sound
classes. During testing the Nao robot performed with
a sound recognition accuracy rate of 91% in the worst
case.

5 Owur Approach

In contrast to other approaches in which the training
phases occurs offline [8; 4; 3; 5] we aim to develop a
system in which the training of the robot to recognise
acoustic events occurs in a natural manner. Thus, nec-
essary constraints of our approach are that the training
process must occur on-board the robot, in real-time, and
without the use of specialist software or external devices
to facilitate the teaching of the robot. Our objective is
to develop a proof-of-concept system which demonstrates
that robots embedded in the home or office could learn
to recognise naturally occurring environmental sounds
through experience, while seeking feedback from people
in the robot’s environment to reinforce the learning pro-
cess.

5.1 Contribution

The main contributions of our approach can be sum-
marised as follows:

e Our system is implemented on a real robot using
embedded sensors and runs on-board the robot.

e Our system’s training phase occurs online, rather
than offline as in the case of related works such as [8;
4; 3; 5].
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Figure 1: The Nao humanoid robot. The Nao is approx-
imately 58cm high, with 25 degrees of freedom. Picture
source: http://www.aldebaran-robotics.com/

e Our system uses a small number of real examples,
with the learning process involving a natural speech-
based interaction process with the robot.

5.2 Hardware

We use an Aldebaran Nao humanoid robot!. The Nao is
approximately 58cm high, with 25 DOF (see Figure 1).
The Nao robot has four microphones with a frequency
bandpass of 300 Hz to 18kHz. The microphones are lo-
cated on the robot’s head, as shown in Figure 2. The
Nao robot utilises an Intel Atom Z530 processor, with
a clock-rate of 1.6gHz and has 1GB RAM. The Atom
processor is a low-power CPU generally used in portable
devices such as netbooks and smart phones. The pro-
cessing power on the Nao is directly equivalent to a Nokia
Booklet 3G [18], or Dell Inspiron Mini 1210 [19], both
developed in 2009 and which also make use of the Atom
7530 processor with 1GB RAM.

Sampling

The robot’s microphones are sampled at 48kHz and send
a buffer every 170 ms containing 4 channels (one channel
for each microphone). We used the left and right micro-
phone channels, with the front and rear microphones be-
ing ignored. The rear microphone channel was ignored
due to high levels of background noise from the robot’s
fan, while the front microphone was ignored to reduce
computational load.

"http://www.aldebaran-robotics.com/
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Figure 2: The Nao’s four microphones. Picture source:
http://www.aldebaran-robotics.com/

5.3 Sound Detection

Rather than identifying the start point and end point of
a sound within the continuous buffer signal, our sound
detection system simply aimed to identify buffer samples
that contained sounds. This decision was made to reduce
the computational complexity of searching within each
buffer for the start and end point of a sound. However,
a negative impact of this approach is that each buffer
can contain irrelevant background noise before a sound
begins and after a sound ends. To reduce the size of this
negative impact, each microphone buffer was halved into
two windows of 4096 samples each of 85ms duration.

To detect if there is a sound present we estimate the
signal power of each window by finding the root mean
square (RMS) of each window. An average signal power
is then calculated for the 30 most recent windows. If the
RMS value for the current window exceeds a threshold?
compared to the average we determine that a sound is
present within the current window. If sounds are de-
tected in consecutive 85ms windows they are assumed
to be part of the same sound, and thus the sound detec-
tion system identifies sequences of buffers that contain a
sound.

Microphone Switching

The sound detection system switches microphones by de-
termining whether the left or the right microphone has
a higher power value. The microphone with the highest
value is used by the classifier for matching. By choos-
ing the microphone closest to the sound source we aim
to process the best quality data of the two microphones.
After the initial microphone determination, the same mi-
crophone is used for the remainder of the detection. For
example, if a sound has a higher initial left RMS value,
then for the duration of that sound the left microphone
would be used.

5.4 Feature Extraction

Once a sound has been detected, the sequence of win-
dows containing that sound are fed to the feature ex-
tractor. As described in Section 5.3, each window is

20ur threshold was set to be double (2 times) the average
of the last 30 windows
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of 85ms duration and contains 4096 samples. The fea-
ture extractor further splits each window into 8 frames
of size 1024 samples with each frame overlapping 50% of
the previous frame. The next step in the feature extrac-
tion process is to window each frame using Von Hann
windowing [17].

The Von Hann window formula is defined as:

w(i) = 0.5 —0.5%cos(2xm*i/(n—1)) (1)

Once the frame has been windowed, we then perform
a Short-time Fourier Transform (STFT) for each frame.
The STFT results in the 1024 samples per frame being
reduced to 513 complex numbers. Once the STFT for
each frame has been calculated, we then calculate the
top 13 Mel Frequency Cepstrum Coefficients (MFCCs)
for each frame (using a freely available code library for
doing so [20]), further reducing the 513 frequency do-
main numbers into 13 numbers. Each set of 13 MFCCs
for each frame is then stored in memory as a description
of the frame. When all the frames for a sound have been
processed the set of MFCCs for each frame are concate-
nated to form a feature vector describing the sound.

5.5 Training and Classification

When a new sound is detected, it is represented as a set
of MFCCs, as described in Section 5.4. The classification
system also treats the length (duration) of each sound
as a feature, thus mapping the number (count) of the
MFCCs and the actual values of the MFCCs to a feature
vector. We employ a simple “class free” classification
system (similar to that in [5]) in which each new sound’s
feature vector is stored in a list, and nothing is forgotten.
Whenever a sound is detected, the classifier compares it
to the known feature vectors, and searches for a match
based upon Euclidean distance threshold. If a match
can not be found, the robot asks via speech its human
supervisor for a new category label to describe the sound
(this interaction process is described in further detail in
Section 6).

Threshold Tuning

To establish appropriate thresholds for determining cat-
egory membership of sounds, we recorded 10 examples
each of 9 different sounds from 9 different positions rela-
tive to the robot, as shown in Figure 3. For each category
of sound the variance and means of MFCCs was calcu-
lated, allowing us to find suitable Euclidean thresholds
separating each category of sound. It its important to
note that these thresholds have then proved suitable for
learning new sounds that were not part of this process.

6 Experimental Setup

To test the sound event classification system a simple
human-robot interactive “game” was developed. This

Nao Facing

@ Sound
Locations

Figure 3: The sound locations used for threshold tuning.
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Figure 4: Flowchart illustrating the human-robot
speech-based interaction sound training and testing
game.

game involves the robot constantly listening for sounds.
If an unknown sound is detected, the robot will ask
“What is this sound?”, to which the human participant
can respond with the name of the sound. Conversely, if
a known sound is detected the robot will ask for confir-
mation from the person they are interacting with that
the classification of the sound is indeed correct. The hu-
man participant can then either agree with the robot, or
disagree. Upon disagreement the robot will then let the
human participant instruct what the sound actually is.
Figure 4 describes the logic of the game process.

7 Results

Using the human-robot interaction sound training game
(described in Section 6), the accuracy of the devel-
oped sound classification system was evaluated in two
phases: firstly, the system was evaluated using prere-
corded sounds played through a speaker; secondly, the
system was evaluated using environmental sounds natu-
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Recognised Sound

MISS | burp | click drill gun |scream | smack | disconnect | ring | button3 | button8
burp 11.1 % | 88.9 %
click 0.0% 100 %
drill 11.1 % 88.9 %
gun 11.1 % 88.9 %
scream 0.0% 100 %
smack 11.1 % 88.9 %
disconnect | 11.1 % 88.9 %
ring 33.3 % 66.7 %
button3 11.1 % 88.9 %
button& 22.2 % 77.8 %

Table 1: Confusion matrix for 10 different prerecorded sounds played through a speaker. Training consisted of a
single instance of each of the 10 sounds. After training was completed, each sound was then played 9 times. The
“MISS” column represents instances in which the robot was unable to recognise the sound. Note, there was not a
single example of a sound being mistaken for another sound.

Recognised Sound
MISS | drawer opening | deodorant spray | mouse click | ball bounce | door knock
drawer opening | 15.0 % 85.0 %
deodorant spray | 10.0 % 5.0 % 85.0 %
mouse click 20.0 % 5.0 % 75.0 %
ball bounce 10.0 % 15.0 % 75.0 %
door knock 15.0 % 10.0 % 5.0 % 70.0 %

Table 2: Confusion matrix for 5 sounds naturally generated by the experimenter. Training consisted of a single
instance of each of the 5 sounds. After training was completed, each sound was then played 20 times. The “MISS”
column represents instances in which the robot was unable to recognise the sound.

rally generated by physical force in our laboratory (e.g.
a person knocking on the door).

Table 1 displays the robot’s performance in recognis-
ing 10 different prerecorded sounds. The sounds ranged
from “natural” sounds (such as a person burping and
screaming), to machinery noises (a gun shot, a power
drill), to electronic household sounds (a phone ringing,
a phone disconnect signal, and button presses). As the
sounds were prerecorded, there is little variation in the
acoustic signature of each sound, and as such there was
not a single instance of a sound being misclassified as
another sound. Accuracy was evaluated after one initial
training example. The combined accuracy of the devel-
oped sound classification system is 87.78%.

Table 2 displays the robot’s performance in recognis-
ing 5 different sounds generated naturally by an exper-
imenter in our laboratory. These sounds included the
bounce of tennis ball on the floor of the lab, a drawer
opening, the experimenter clicking a computer mouse,
an aerosol deodorant spray being pressed, and a single
knock on the door to the lab. For these naturally gen-
erated sounds, due to natural variation that can occur
in the acoustic signature (for example, knocking on a

slightly different part of the door with a slightly differ-
ent level of force with a slightly different part of the hand
can generate a very different sound), the accuracy of the
system dropped to 78.0%. Some similar sounds, such as
the door knock, ball bounce, and mouse click, were on
occasion confused by the robot.

For both prerecorded and naturally generated sounds,
the majority of detection errors happen when the robot
has only been exposed to two or three examples, with
performance improving over time as more examples are
stored in memory.

Lastly, an important aspect of the training game is a
means for teaching the robot to ignore certain sounds.
By instructing the robot to ignore a sound it will not re-
spond when it hears that sound again. This was needed
as when the robot turns its head to look at the partic-
ipant the robot’s own motors would trigger the sound
detection process.

7.1 CPU and Memory Usage

Our solution was constrained by the limited processing
power of Nao robot (described in Section 5.2). Peak
CPU usage was measured to occur during the Short-
time Fourier Transform (STFT) which results in the



Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

1024 samples of each frame being reduced to 513 com-
plex numbers (see Section 5.4 for implementation de-
tails). For sounds less than 1 second in duration, peak
CPU usage was measured at 46.7%. When the sytem is
listening for sounds (as opposed to processing and clas-
sifying them), the CPU usage was measured at 9.6%.
Memory usage was relatively constant during the sys-
tem’s operation, hovering between 7.9% and 8.0%.

8 Discussion

We have developed an acoustic event classification sys-
tem for a humanoid robot that:

e Operates in real-time.

e Requires minimal training, producing recognition
rates of greater than 75% from a single training
example, and with this recognition rate improving
with further training examples.

e Is user friendly - the training process is driven only
by human-robot speech interactions. No external
software, tools or special expertise are required; any-
one, regardless of their experience with robots, can
teach the robot to recognise any sound that they
desire.

e Allows the robot to learn to ignore irrelevant sounds
as determined by the user.

Our proof-of-concept system demonstrates it is possi-
ble to develop autonomous robots capable of learning,
remembering and recognising non-verbal sounds in their
environment from a very small number of examples. In
the future, “robot hearing” could have enormous po-
tential in a wide variety of application domains, such
as security and surveillance, household assistance, and
health care. Robot hearing could also be used to gen-
erate feedback and reinforcement for the robot during
visually guided tasks.

8.1 Limitations
Limitations of this work include:

e The system is only able to classify sounds which
have a duration of less than one second. When a
sound is detected with a longer duration, the robot
will start to lose audio buffers containing the sound
due to the increased computational load from con-
tinued running of both the sound detection and
sound classification processes.

e Some common household sounds such as a telephone
ringing or a stapler being used are composed of a se-
quence of two or more sounds. The detection system
recognises sounds such as these as multiple individ-
ual sounds, rather than as a single collective sound.

e Lastly, the system lacks a scalable method for cate-
gorising and comparing sounds. We employ a sim-
ple “class free” approach in which each new sound’s
feature vector is stored in a list, and nothing is ever
forgotten. Thus, if an example of a known sound
is heard but the classifier fails to recognise it, the
current example of the known sound is stored as
a new sound in a new “category”. Thus a more
flexible categorisation system is required which can
compare similarity between sounds, and adaptively
adjust category membership boundaries.

8.2 Future Work

There are a number of immediate improvements that
could be easily implemented. Most notably, implemen-
tation of a classification system that allows the robot
to learn sound categories autonomously without direct
human supervision. While our current process is simple
and speech-based, it still requires a “human in the loop”.

Furthermore, the robot requires the ability to habitu-
ate to regular but irrelevant sounds. Currently the robot
needs to be told by a human supervisor which sounds to
ignore, which is obviously not scalable. A better ap-
proach would be to integrate knowledge from other per-
ceptual modalities to allow the robot to autonomously
determine the relevance of particular sounds to its task.

Lastly, we intend to integrate our acoustic sound
recognition system with the THAMBS attention system
[2], which provides a simple but effective method for pro-
ducing natural reactive behaviours in response to multi-
modal perceptual input.
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