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Although rectangular dualization has been studied for several years in the
context of floorplanning problems, its descriptive power has not been fully
exploited for graph representation. The main obstacle is that the computation
of a rectangular dual of any planar biconnected graph requires a sequence of
non-trivial steps, some of which are still under investigation. In particular,
the most tricky issue is the optimal management of separating triangles, for
which no existing algorithm runs in linear time. In this paper we present our
advances in rectangular dualization and we show two applications that, while
very different, explain better than others its role.
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1. Introduction

Rectangular dualization is the computation of a rectangular dual of a pla-
nar graph. It was originally introduced to find rectangular topologies for
floorplanning of integrated circuits:1 by a floorplan, a rectangular chip area
is partitioned into rectilinear polygons corresponding to the relative loca-
tion of functional entities of the circuit. Subsequently, it found application
in many other fields, in particular becoming effective in visualization prob-
lems. In this paper we briefly describe two possible applications. The first



one is visualization of network topologies, concerning the problem of en-
gineering and optimizing large communication networks. This task is very
challenging, as often real networks are huge, including hundreds and even
thousands of nodes and links. In order to help human operators in main-
taining and updating the description and documentation of its structure, a
network is usually described in form of a hierarchy of subnetworks. Rect-
angular dualization is a very useful technique in graph drawing, especially
when applied to the hierarchical drawing of a structured graph.
The second application domain which could benefit from rectangular dual-
ization is the automatic design of Virtual Worlds whose development follows
the 3D Electronic Institutions methodology,2 which helps to separate the
development into two independent phases: specification of the interaction
rules and design of the 3D Interaction environment. During the specifica-
tion phase not only the interactions rules are specified, but also the basic
interaction components are determined. One part of the specification is the
graph, which describes which scenes are required in the system (nodes of
the graph), shows how the transitions between scenes are made (nodes)
and which scenes can be reached from another scenes (arcs). By rectangu-
lar dualization of this graph, a two dimensional map of the Virtual Worlds
is achieved and then scenes and transitions become 3-dimensional rooms,
while the arcs of the graph determine which rooms have to be placed next
to each other and have a shared door. The use of rectangular dualization is
strongly limited by the fact that not all planar graphs admit a rectangular
dual. However, it is possible to apply a minimal set of transformations to
the original graph to obtain a graph admitting a rectangular dual repre-
sentation. In the following sections we first describe an algorithm which
computes the rectangular dual of any planar graph (section 2); then we
outline the advantages of rectangular dualization in the two applications
mentioned above (sections 3 and 4). In section 5 an overview of the paper
and of future work is given.

2. OcORD: Optimal Constructor of a Rectangular Dual

A rectangular dual of a planar graph G = (V,E) is a rectangle R partitioned
into a set Γ = R1, ....Rn of non overlapping rectangles such that:

(1) no four rectangles meet at the same point;
(2) there is a one-to-one correspondence f : V → Γ such that two vertices

u and v are adjacent in G if and only if their corresponding rectangles
f(u) and f(v) share a common boundary.



Graphs not admitting a rectangular dual contain separating triangles, tri-
angular regions of the graph that are not faces.3–5 The idea behind OcORD,
our tool aiming at constructing the rectangular dual of any planar graph in
linear time, is to remove (we will use the term “break” from now on) all the
separating triangles, if any, from the input graph, to obtain a graph admit-
ting a rectangular dual. This can be accomplished by adding a crossover
vertex on one edge of each separating triangle, as Lai and Leinwand pro-
posed in.6 However, their approach does not take care of adding a minimal
set of crossover vertices, as they conjectured it was a NP-complete prob-
lem. In fact, it is possible to break two or more separating triangles by
adding only one crossover vertex on an edge shared by all of them, instead
of adding a vertex for each separating triangle. If a minimal set of crossover
vertices is added, then we say that the breaking of separating triangles is
optimal. In OCoRD this task is performed in five steps:

(1) four external vertices are added according to.5

(2) All the separating triangles are detected with the algorithm described
in7 and the geometrical dual of the resulting graph is computed.

(3) All the separating triangles are collapsed into macro-vertices, which
creates a hierarchical structured graph (section 3.3).

(4) A crossover vertex is added on the duals of the edges belonging to a
minimum covering. In8 a formal proof that the number of crossover
vertices added is minimum is given.

(5) The resulting graph is triangulated with the algorithm described in9

The graph obtained after these transformations admits a rectangular
dual, that can be computed in linear time with several algorithms.5,10 How-
ever, this procedure does not run in linear time and is fairly complicated,
as it requires structuring the graph in step 3. Instead, we are investigating
an algorithm that works on the plain graph and exploits matching in cubic
graphs, that can be computed in linear time, as shown in.11 Moreover, we
have also developed a heuristic method that optimally breaks all the sepa-
rating triangles in almost all the practical cases. We reserve to describe it
in future work.

3. Visualization of Network Tolopogies

The plainest way to describe a communication network is to model the re-
lationships among sites and links by means of a weighted undirected graph,
but unless some more assumptions are taken, this approach can raise sev-
eral problems. Problems are encountered when networks have a hierarchical



topology, where nodes are classified in levels, usually two or three, accord-
ing to their geographical position, number of users, and so on. Moreover,
the optimization of large communication networks (for example the mini-
mization of the number of message hops, i.e. the number of graph nodes
traversed by a message) requires the use of special methods which need
a most suitable graph representation. Many issues are encountered during
network design phase, when repeated analysis and visualization of the net-
work has to be performed: practical networks include hundreds or often
thousands of nodes and links, so that even a simple description and docu-
mentation of the network structure is hard to maintain and update. In this
case the network is usually described in form of a hierarchy of subnetworks
that are represented by collapsing some subnetworks into single nodes or
single links to be described in separated documents. Such a hierarchical
approach to network (and graph) description can be formalized into a com-
plex but flexible graph structure called structured graph. In the following
sections we stress the importance of rectangular dualization in hierarchical
graph drawing.

3.1. Role of Rectangular Dualization in Network Drawing

Using a rectangular dual in graph drawing offers several advantages:

(1) Its computational complexity is optimal: O(n) time and O(n2) area,
like other most efficient methods.

(2) It provides a symmetrical drawing with respect to x and y coordinates.
(3) It can be naturally extended to a hierarchical drawing of a structured

graph G, by introducing the concept of structured rectangular dual (see
section 3.3)

(4) The construction of a 2-visibility drawing from a rectangular dual is
immediate (see Figure 1).

(5) A 2-benda rectilinear drawing can be obtained from a rectangular dual
in linear time.

(6) Also a 1-bend rectilinear drawing can be obtained from a rectangular
dual in linear time.

The 2-visibility drawing method has been introduced by Kant.12 In a 2-
visibility drawing the vertices of a given graph are represented by rectan-
gles (rectangular boxes) and the adjacency relationships are expressed by

aA bend is a point where the drawing of an edge changes its direction. A drawing is said
to be k-bend if each edge has at most k bends



Fig. 1. A 2-visibility representation computed from a rectangular dual (depicted in the
background)

horizontal and vertical lines drawn between boxes. The authors claim a
high quality of the drawing. This kind of drawing can be trivially derived
from the rectangular dual of a graph as follows. Two adjacent rectangles R1
and R2 of the dual graph share a portion of an edge that we call window.
If inside R1 and R2 we draw two smaller rectangles large enough to be
mutually visible through the window, they can be connected by a straight
segment. The result of this procedure is shown in figure 1.

3.2. Drawing Modes and Styles

In this section we distinguish two concepts: drawing mode and drawing
style. A drawing mode defines the form of edge and vertex representation
adopted: in straight-line drawing mode edges are drawn as line segments
connecting vertices; in orthogonal drawing the edges are drawn as sequences
of segments parallel to x or y axes; in bus mode drawing (Figure 2) bundles
of parallel edges are collected into a single path (or bus) until each edge
emerges from the bus, and reaches its destination vertex (in some cases
each bundle is identified by a label). Drawing modes for vertices include
points, squares, rectangles or circles of fixed or variable size.

A drawing style is the combination of a drawing mode with a specific
algorithm displaying data. In other words, a drawing style is concerned with
relative positioning of vertices and edges in the plane, whereas a drawing
mode with the form of representing edges and vertices. For example, in
grid drawing style, vertices and edges are drawn only on a discrete grid in
the plane; in the Kandinsky model (also known as Podevs), and in some
of its variants, like the simple Kandinsky model (Podevsnef ), vertices are



represented by squares of equal size, placed on a coarse grid and edges are
drawn, in orthogonal mode, on a finer grid.

(a) A classical drawing (b) A bus mode drawing

Fig. 2. Classical drawing and bus mode drawing of a given graph

The bus drawing mode is useful for undirected graphs, since the arrow-
heads would introduce ambiguities. In figure 2 Kandinsky drawing (figure
2(a)) and bus-mode drawing (figure 2(b)) of the same graph are compared.
The latter, although it is 2-bend while the first is 1-bend, is more read-
able, as edges are not too close each other. To create a bus style drawing,
we simply have to ignore the offsets of the edges on the finer grid, and
transform each bend into a curved corner. Despite its evident utility (see
schematics drawing tools like Orcad) this mode has not been considered by
researchers in graph drawing. In this paper we use only bus-mode layouts
because it is particularly useful for connecting vertices of high degree, a
frequent case in clustered graphs. Bus-mode drawing is a powerful way for
structuring and clustering edges of a graph. Buses represent a structured
set of interconnections: while a sub-graph can be represented by a single
macro-vertex, a set of edges contributing to the same logical function can
be condensed into a single bus, that can be considered as a special form
of hyper-edge. Our algorithm for constructing the dual graph assigns in-
teger coordinates to each rectangle associated with a vertex. In this way,
by scaling the rectangle sizes we can allocate space both for squares repre-
senting vertices and zones dedicated to interconnections. It is a trivial task



to derive a bus-mode rectilinear drawing of a graph G from its rectangular
dual. Such a drawing could be based on paths all composed by exactly two
bends with a pleasant and clear visual effect. We call this kind of drawing
the naive 2-bend bus-mode drawing. However, with a minimum effort, we
can produce a 1-bend (maximum) drawing in linear time.

3.3. Hierarchical Drawing of Structured Graphs

Managing large networks requires the decomposition of the network in man-
ageable units organized in a hierarchy (tree) describing how single parts con-
tribute to form the original network. A structured graph (or clustered graph,
henceforth referred to as “SG”) is a form of abstraction applied to a large
graph in order to make it modular and more manageable. The abstraction
consists in collapsing a subgraph to a single vertex (called a macrovertex ),
or to a single link (called a macrolink), thus obtaining a simpler and hi-
erarchically described graph. The structuring operation is usually iterated
recursively until a large network is decomposed into relatively small and
manageable components and subcomponents. Every subcluster is defined
at several levels of nesting adopting a methodology that is usually applied
to every large project (software and hardware design) involving hundreds
or thousands of components: “modularity”. Figure 3 shows an example of a
structured graph. We will refer to the graph represented in figure as “gd94”.

Formally, a SG is a pair H = (G,T ), where G is a connected simple
(multi- or hyper-) graph and T is a tree describing the structure of H. The
leaves of T are exactly the vertices of G and each node t ∈ T represents a
cluster Gt = (Vt, Et) of G such that Vt ⊆ V is the subset of vertices that are
leaves of the subtree of T rooted at t. Gt is the subgraph generated by Vt,
while Ht = (Gt, Tt) is the SG associated with t. Notice that the planarity
of the underlying base graph does not imply the planarity of a structured
graph if arbitrary subgraphs are collapsed. In order to preserve planarity,
the collapsing operation should respect some conditions. Some researchers
require H to be c-planar ,13 namely there exists a planar embedding of H

in the plane, with a planar drawing such that no region R surrounding a
macro-element is crossed by an edge having both vertices external to it.
Instead, we give the following conditions:

(1) The original graph must be planar.
(2) Only complete and connected subgraphs are collapsed.
(3) Elements of the same kind (namely macro-vertices or macro-links) must

be completely nested or independent, thus having an empty intersec-



Fig. 3. Example of a structured graph (gd94), where each cluster is surrounded by a
rectangle

tion.
(4) Different macro-elements (vertices and/or links) may share only vertices

and not one or more links.

and we report the following well-known results.

Definition 3.1. A graph G′ is said to be a subdivision of a graph G if
G′ is obtained from G by replacing some of its edges with paths having at
most their endvertices in common.

Theorem 3.1 (Kuratowski, 1929). A graph is planar if and only if it
does not contain a subdivision of K5 and K3,3.

Now we can prove the following:

Theorem 3.2. In relation with the above definition of a structured graph,



we have that if only connected subgraphs are collapsed, the resulting struc-
tured graphs are all planar.

Proof. By absurd, suppose that there is a non planar clustered graph G′

of a planar graph G. For Kuratowski’s theorem G′ contains a subdivision
K of a K5 or K3,3. G′ must contain at least a macro-vertex because G is
planar. Let m be a macro-vertex of G′ and Gm the corresponding clustered
subgraph in G; by the connectivity of Gm follows that there is a path in
Gm joining the two ports of m on which K is defined in G′, that is, there
exists a subdivision K ′′ of G, that is a contradiction.

3.4. Hierarchically Structured Rectangular Duals

Drawing a structured graph, or even drawing a medium-sized graph, re-
quires to fit the available page size for a drawing, i.e., to decompose the
representation into sheets and to refer them to the original graph. Either
for structured graphs, often the size of a single component does not com-
ply with visualization requirements. In this case, a visualization-oriented
decomposition should be preferred. A hierarchical structure of a graph can
be extracted from its rectangular dual. To this purpose we introduce the
concept of hierarchically structured rectangular dual or, more simply, hier-
archical rectangular dual (HRD) of a graph G. The HRD of a graph G is a
tree of rectangles (R, T ) such that the rectangles of the dual graph repre-
sent either single vertices, like in a standard rectangular dual, or connected
subgraphs of G, abstracted to a single vertex (see, for example, rectangles
violet (V) and turquoise (T) of figure 3) and called macro-rectangles.

In figure 3 clusters are obtained from a rectangular dual computed on
“gd94” using OcORD. Rectangles in the figure are rectangles in the rect-
angular dual that have other rectangles inside, meaning that they do not
represent vertices, but subgraphs. We are far from saying that rectangular
dualization is a method for clustering graphs, as clustering is not only a
topological issue, but has to take into account of many other factors. How-
ever, if we restrict our attention only to drawing, clusters suggested by a
rectangular dual seem to be very efficient.

3.4.1. Computing a HRD

In the previous section we have described how a HRD suggests a clus-
terization of the primal graph. It is also possible to perform the inverse
step, namely computing a HRD from a planar structured graph fulfilling



conditions listed in section 3.3. The idea is the following: we build the rect-
angular dual R, where each cluster Ci is depicted as a rectangle Ri; for each
cluster Ci we compute its rectangular dual and we draw it inside Ri. This
procedures preserves the adjacencies between the macro-vertices, without
caring about adjacencies between simple vertices lying in different clusters.
Thus, the adjacency between two vertices does not necessarily imply the
adjacency of the two corresponding rectangles in the rectangular dual. In
order to fulfil this second constraint, each cluster must specify an interface
to the other clusters. More in details, if A and B are two adjacent clusters,
a vertex i (called interface vertex ) is added so that each edge (a, b), a ∈ A

and b ∈ B, is split into two edges (b, i) and (a, i). Each cluster is then sur-
rounded by the interface vertices. Thus, we compute the HRD of this graph
and we draw the rectangular dual of each cluster inside the corresponding
rectangles. However, this procedure raises several problems, in terms of ef-
ficiency of the final drawing, and this is the main reason why here we give
only a brief overview. First of all, it is not clear how many interface vertices
have to be added: an interface vertex for each adjacency of a cluster does
not seem to be an optimal choice. Next, when computing the rectangular
dual of clusters, we consider it having its interface vertices on the external
face. Thus, an interface vertex between cluster A and cluster B appears on
the external face (and in the rectangular dual) of both clusters, meaning
that they are replicated. This topic will be object of further analysis in our
research.

4. Representation of 3D Electronic Institutions

In this section we only introduce in short an application that, while being
very different from network visualization, demonstrates the power and ver-
satility of rectangular dualization. For more details the interested reader
can refer to.14

3D Electronic Institutions are a new method of software design of open
systems based on the metaphor of 3D Virtual Worlds. One of the draw-
backs of the Virtual Worlds technology is that its design and development
has emerged as a phenomenon shaped by a home computer user, rather
than by the research and development in universities or companies. Thus,
Virtual Words do not have the means to enforce technological norms and
rules of their inhabitants. The enforcement of organizational conventions in
3D Electronic Institutions methodology is achieved by separating different
patterns of conversational activities into separate methodological entities
(scenes), assigning different roles to different types of participants, spec-



ifying the rules (protocols) for inter-participant interactions and defining
the role flow of participants between different scenes. The specification of
scenes and the role flow are done in a form of a directed graph, where
nodes represent scenes and arcs and their labels define the role flow. This
graph, called Performative Structure, forms a basis for the visualization of
the system. Rectangular dualization plays its central role in automatically
transforming the Performative Structure into a 3D Virtual World. In fact,
the rectangular dual of the Performative Structure is a 2D map of the in-
stitution, which is further transformed into a 3D Virtual World. In such a
process, rectangular dualization offers a space optimal solution, as it can
be used for minimizing the distance between two agents (entities in the vir-
tual world) that are expected to have frequent interactions. The automatic
generation of a 3D Virtual Word consists of the following steps:

(1) The redundant information contained in the Performative Structure is
filtered out. If some nodes of the graph are connected with more than
one arc, only one randomly selected arc is left and all the others are
deleted.

(2) The Performative Structure is transformed into a format compatible
with OcORD input and a rectangular dual is computed. In the rect-
angular dual, scenes and transitions are transformed into rooms and
connections are visualized as doors.

(3) A 3D Virtual World is generated from the 2D map created at the previ-
ous step. The generated 3D Virtual World is visualized and connected
to the infrastructure, which controls the correct behaviour of the par-
ticipants.

5. Conclusions and Future Work

In this paper we presented the main reasons behind our interest in rect-
angular dualization, describing some useful applications that benefit from
this technique. Some work is still to be done in developing an efficient and
linear-time algorithm for computing the rectangular dual of every planar
graph. Moreover, the computation of a HRD of a structured graph is far
from being efficient. Finally, rectangular dualization is only a particular
case of a more general class of rectangular representations, called rectan-
gular layouts. Most of them show the same problems arising in rectangular
dualization and have a similar impact in practical applications (think about
cartograms, for example). Our aim is also to extend our results to these lay-
outs.
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