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Abstract. The most popular two methods of extending the intelligence
of virtual agents are explicit programming of the agents’ decision mak-
ing apparatus and learning agent behaviors from humans or other agents.
The major obstacles of the existing approaches are making the agent un-
derstand the environment it is situated in and interpreting the actions
and goals of other participants. Instead of trying to solve these problems
we propose to formalize the environment in a way that these problems are
minimized. The proposed solution, called Virtual Institutions, facilitates
formalization of participants’ interactions inside Virtual Worlds, helping
the agent to interpret the actions of other participants, understand its
options and determine the goals of the principal that is conducting the
training of the agent. Such formalization creates facilities to express the
principal’s goals during training, as well as establishes a way to commu-
nicate desires of the human to the agent once the training is completed.

1 Introduction

Non-gaming Virtual Worlds like Second Life (http://secondlife.com) or Active
Worlds (http://activeworlds.com) constantly grow in popularity. Their signifi-
cance was highlighted by many researchers (i.e. [1], [2]). A report by Gartner pre-
dicts that 80% of the Internet users will be actively participating in non-gaming
Virtual Worlds by the end of 2011 [1].

The popularity of such Virtual Worlds creates a demand for intelligent au-
tonomous agents operating within these virtual environments. The need for
human-like sales assistants in E-Commerce environments, computer controlled
teachers in virtual classrooms, or smart guides and travel agents in tourism
systems stimulates researchers to look for more and more complex software ar-
chitectures controlling the behavior of the autonomous agents.

The behavior of the majority of such virtual characters today is often con-
trolled using preprogrammed scripts, finite state machines, or tree searches. None
of these methods is well known for generalization capabilities. Consequently,
common approaches for such virtual characters lead to ennui and frustration
of the humans interacting with them. After a short period of interaction, the



actions of computer-controlled characters tend to appear artificial and lack the
element of surprise human participants would provide. Moreover, if a human acts
in a way not envisaged by the programmers of the characters, such characters
simply appear to behave “dumb” [3].

Another serious problem is making virtual agents appear believable. Carnegie-
Mellon set of requirements for believable agents include personality, social role
awareness, self-motivation, change, social relationships, and ”illusion of life”.
Integrating these believability characteristics into virtual environments is asso-
ciated with computational and architectural complexity; is platform and problem
dependent, and is essentially far from achieving a high level of believability [4].
No existing virtual agent was yet able to pass the Turing test [4], adaptations of
which are the only known research method of believability assessment [3].

Instead of explicitly programming various believability characteristics some
researchers rely on the simulation theory. The key hypothesis behind this theory
can be best summarized by the cliché “to know a man is to walk a mile in his
shoes” [5]. It is assumed that simulation and imitation are the key technologies
for achieving believability. In particular, using these techniques to produce more
human-like behavior is quite popular in cognitive systems research [6].

Applying simulation theory to the development of autonomous agents is
known as imitation learning. This approach is not new but it is not as pop-
ular as other types of learning and, most importantly, it has not been very well
developed. Most of the imitation learning research is focused on robots intended
for deployment in physical world [3]. This focus led to a situation where research
aimed at behavior representation and learning struggles with issues arising from
embodiment dissimilarities [7], uncontrollable environmental dynamics [8], per-
ception and recognition problems ([6], [7]) and noisy sensors [6].

The aforementioned problems do not exist in Virtual Worlds. The sensors
available there are not noisy, all participants normally share similar embodiment
(in terms of avatars) and the environment is controllable and easily observable.
Thus, using imitation learning for virtual agents represented as avatars within
Virtual Worlds ought to be more successful than applying it to robots situated in
the physical world. Despite this fact, only a few scholars have taken this direction
and most of them are concerned with gaming environments, where virtual agents
are used as computer controlled enemies fighting with human players [9], [10].

Focusing on video games makes possible to introduce a number of limitations
and simplifications, which are not acceptable in non-gaming Virtual Worlds. The
algorithms described in [9] seem to be quite successful in teaching the agent
reactive behaviors, where next state an agent should switch into is predicted on
the basis of the previous state and a set of environment observed parameters.
These algorithms also prove to be quite useful in learning strategic behavior
inside a particular video game (Quake IT). The main limitation we see in this
approach is that players’ long term goals are assumed to be quite simple, namely
to collect as many items as possible and to defeat their opponents [11].

In non-gaming Virtual Worlds, the situation is not that simple, as goals
are more complex, and there is also a need to recognize the goals, desires and



intentions of the human. For understanding the goals it is required to be able to
assign the context to the training data and sort it into different logical clusters.
Recognizing the desires and intentions is necessary when the agent is to replace
the human in doing a particular task. For example, a principle may wish to train
a virtual agent to participate in an auction on human’s behalf. One of the reasons
why such tasks cannot be achieved by the algorithms presented in [9] and [10]
is that there is no mechanism provided there to communicate human requests,
and there is no method for the agent to infer human’s desires and intentions.

In respect to making agents understand the desires and intentions of the hu-
mans, existing approaches fall under one of the following extreme cases. First
case is to purely rely on explicit communication between agents and humans,
when every goal, belief, desire, intention and action the human trains the agent
to perform is formalized for the agent. Another case is the fully implicit commu-
nication between humans and agents, when any explicit form of communication
is considered unacceptable. As a result in the first case it often becomes easier
to program the agents than to train them and in the second case only simple
reactive behaviors can be learned and more complex behaviors are mostly left
out (as the agent can not recognize complex human desires or intentions).

In this paper we explore the following two research hypotheses in relation to
using imitation learning for virtual agents in non-gaming Virtual Worlds:

Hypothesis 1: It is impossible for the agent to implicitly recognize all the desires
and intentions of the human and, therefore, a high-level communication language
is required in some cases for the human to make the agent aware of those.

Hypothesis 2: For the agent to be able to handle the complexity of the human
actions and goals, it should not purely rely on its own intelligence but should
expect some help from the environment it is situated in.

The first hypothesis is an attempt to find a happy medium between the
previously described extreme cases. In non-gaming Virtual Worlds participants’
goals are not as trivial as in video games. On the one hand, always providing
the agent with detailed formalization of human’s actions, goals, intentions and
desires is even less effective here. On the other hand, the goals and intentions of
the humans are too complex for the agent to be able to infer them implicitly.

The second hypothesis is based on the suggestion made by Russel and Norvig
that the agent’s ability to successfully participate in some environment and ex-
tend its intelligence there is highly dependent on the complexity of this environ-
ment [12]. Authors mention that having the agent situated in a fully observable,
deterministic and discrete environment significantly simplifies agent program-
ming and valuably facilitates agent learning. As an example of a fully observ-
able, deterministic and discrete environment, we consider Virtual Institutions,
which are Virtual Worlds with normative regulation of participants’ interactions.
Through introducing the normative regulation of the interactions Virtual Insti-
tutions help to interpret human actions, identify logical states of the agent and
let humans communicate with an agent using a high level language in situations
where it is impossible for the agent to recognize humans desires and intentions.



The key message this paper is trying to communicate is that shifting some
efforts into formalizing the environment may prove being more beneficial than
spending them on improving agents’ intelligence. To support this message we
show how the application of Normative Multiagent Systems can help in formal-
izing the interactions of humans and agents participating in a Virtual World.

The remainder of the paper is structured as follows. Section 2 provides a
description of the Virtual Institutions concept. In Section 3 it is shown how using
Virtual Institutions can facilitate imitation learning in virtual agents. Finally,
Section 4 summarizes the contribution and outlines the directions of future work.

2 Virtual Institutions as Normative Virtual Worlds that
Enable Learning from the Behavior of the Inhabitants

We consider Virtual Institutions [13] being a new class of normative Virtual
Worlds, that combine the strengths of 3D Virtual Worlds and Normative Mul-
tiagent Systems, in particular, Electronic Institutions [14]. In this ”symbiosis”
the 3D Virtual World component spans the space for visual and audio pres-
ence, and the electronic institution component takes care of enabling the formal
rules of interactions among participants. The normative system of the Virtual
Institutions provides context and background knowledge for learning, helping to
explain the tactical behavior and goals of the humans. The 3D representation
provides the necessary environment to observe the behaviour of the humans.
It assumes similar embodiment for all participants, including humans and au-
tonomous agents, so every action that a human performs can be observed and,
if necessary, reproduced by an autonomous agent.

One of the initial stages in the development of Virtual Institutions is for-
mal specification of institutional rules. The specification defines which actions
require institutional verification, assuming that the rest are safe and can be
instantly performed. On the one hand, the specification plays the key role in
the environment formalization and eventually helps the agent to put its actions
into context. On the other hand, due to its formal nature and the available for-
mal verification mechanisms, rules specification is a powerful way to ensure the
validity of the participants’ interactions and provide guarantees of correct rule
enforcement. The specification is expressed through three types of conventions
and their corresponding dimensions (for detailed explanation see [14]):

Conventions on language form the Dialogical Framework dimension. It de-
termines language ontology and illocutionary particles that agents should use,
roles they can play and the relationships or incompatibilities among the roles.

Conventions on activities form the Performative Structure dimension. It es-
tablishes the different interations agents can engage in, and the role flow policy
among them. Each interaction protocol is specified in the so-called scenes, which
define the possible interactions agents may have.

Conventions on behaviour form the Norms dimension. It captures the conse-
quences of agents’ actions within the institution. Such consequences are modeled
as commitments (obligations) that agents acquire as consequence of some per-
formed actions and that they must fulfill later on.



A virtual institution is enabled by a three-layered architecture presented by
three conceptually (and technologically) independent layers, as shown in Fig 1.
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Fig. 1. The operation of the three-layered architecture of the virtual institution.

Normative Control Layer. Its task is to regulate the interactions between par-
ticipants by enforcing the institutional rules.
Communication Layer. It causally connects the above discussed institutional
dimensions with the virtual world. It transforms the actions of the virtual world
into messages, understandable by the institutional infrastructure and vice versa,
using the Action/Message table created by the system designers.
Visual Interaction Layer supports the immersive interaction space of a virtual
institution. Technologically, this layer includes a 3D virtual world and the inter-
face that converts communication messages from the Communication Layer.
Fig 1 outlines the interaction between all these layers on an example of the
agent requesting to enter a room inside the Virtual World. The human moves
the mouse pointer over the door handle and clicks the mouse button (requesting
the avatar in the Virtual World to open a door by pushing it handle). With
the help of the Action/Message table this event is then translated into a mes-
sage understandable by the Normative Control Layer. In case such a message
is accepted in the Normative Control Layer the response message is sent back
to the Communication Layer. The Communication Layer again consults the Ac-
tion/Message table and transforms this response into the corresponding action
which is executed in the Visual Interaction Layer. In the given example this
action will result in opening the door and moving the avatar through it.

3 Enabling Imitation Learning with Virtual Institutions

An important feature of Virtual Institutions is that every human participant
(principal) is always supplied with a corresponding software agent. The couple
agent/principal is represented by an avatar. Each avatar is controlled by either
a human or the autonomous agent. The agent is always active, and when the



human is driving the avatar and acts in the Virtual World, the agent observes
those actions. This allows the deployment of learning algorithms in order for the
agent to learn how to make the decisions on behalf of the human.

The formal specification of a Virtual Institution contributes to learning the
human-like behavior through providing the autonomous agents with a way of
translating the actions performed by the human into the formal context of the
institution. The dimensions of the institutional specification contribute to the
quality of learning in the following way:

— Dialogical Framework: the roles of the agents enable the separation of the
actions of the human into different logical patterns. The message types speci-
fied in the ontology help to create a connection between the objects present in
the Virtual Worlds, their behaviors and the actions executed by the avatars.

— Performative Structure: Enables grouping of human behavior patterns into
actions relevant for each room.

— Scene Protocols: Enable the creation of logical landmarks within human
action patterns in every room.

Fig. 2 illustrates how the institutional specification influences the imitation
learning of autonomous agents in Virtual Institutions.

Fig. 2 a) outlines a performative structure of a prototypical Virtual Institu-
tion containing three rooms (registrationRoom, meetingRoom and tradeRoom).
In the performative structure graph these rooms are connected through transi-
tions (corridors). The arcs in the graph (visualized as doors) are marked with
the permissions of the agents playing particular roles to enter certain rooms or
corridors. Each of the rooms is associated with its interaction protocol. To de-
termine the entrance into the institution and its exit, invisible rooms “root” and
“exit” are included into every Performative Structure.

A protocol of each scene is specified by a finite state machine establishing the
possible interactions agents may have. Fig. 2 b) shows the specification of the
registrationRoom scene. The upper part is the scene protocol, while the lower
part outlines the institutional level messages that can change the scene state.

Fig. 2 c) illustrates how the institutional specification can be used to simplify
the imitation learning of virtual agents. It represents agent’s decision graph
created with the help of the institutional specification.

The decision graph is created and modified while the principal is acting in the
Virtual Institution. These actions can be of two types. The actions that require
institutional verification are the institutional level actions, while the rest are
the actions of the visual level. The training of the virtual agents for believable
behavior in Virtual Institutions happens on both visual and institutional levels.
The actions of the visual level are important for capturing, for example, human-
like control of avatar movement. The actions of the institutional level, on the
one hand, allow the autonomous agent to make decisions about when to start
and stop collecting data about the actions of the visual level and which context
to assign to the collected sequences. Analyzing the sequence of institutional level
actions on its own allows to understand how to reach different rooms and separate
the sequences of actions there into meaningful logical states of the agent.
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Fig. 2. Institutional Specification and Agent Training.

Through the three-layered architecture presented in Fig. 1 each institutional

level action is transformed into an institutional message. The nodes of the agent’s
decision graph correspond to these institutional messages. Each of the nodes is
associated with two variables: the message name and the probability of this
message to be executed. The arcs connecting the nodes are associated with a
set of parameters the avatar in question was able to sense in the environment
and the recorded sequences of the visual level actions that represent believable
avatar transitions between the institutional level actions.

In order to communicate human’s desires to the agent we have defined a list

of textual commands. Each command starts with the special keyword “Do:” and
the rest of the command is an institutional message. When the agent receives
such an instruction it searches its current decision graph for the node with the
corresponding institutional message, and backtracks through it to the current
node. Hence, it executes the sequence of the most probable actions (with the
highest probability) that lead from the current node to the target node. More
details about the learning algorithm can be found in [13].

4 Conclusions and Future Work

We have presented the concept of Virtual Institutions as the facilitator of imi-
tation learning and a mechanism of high level communication of human desires
to a virtual agent. Future work includes applying Virtual Institutions to the



domain of electronic markets, using the described learning mechanisms within
this domain and conducting experiments on the evaluation of believability.
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