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ABSTRACT
Simulating large crowds of virtual agents has become an im-
portant problem in virtual reality applications, video games,
cinematography and training simulators. In this paper, we
show how to achieve a high degree of appearance variation
among individual 3D avatars in generated crowds through
the use of genetic algorithms, while also manifesting unique
characteristic features of a given population group. We show
how virtual cities can be populated with diverse crowds of
virtual agents that preserve their ethnic features, illustrate
how our approach can be used to simulate full body avatar
appearance, present a case study and analyze our results.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Artificial, aug-
mented, and virtual realities

Keywords
Crowd Simulation, Genetic Algorithm, Avatar Appearance

1. INTRODUCTION
Virtual worlds and 3D games use 3D avatars1 for user’s

physical representation in the virtual space as well as for
simulating computer-controlled non-player characters. 3D
avatars are also widely used in the movie industry, train-
ing simulators and health systems. In most instances, such
avatars are manually designed, but often there are situa-
tions when such manual design is not practical. The most
common case when avatar design automation is required is
when a large crowd of computer-controlled avatars must be
simulated to perform a particular group activity.

As an example of automatic crowd generation, one of the
most popular solutions in the movie industry, is to utilize

13D avatar is an animated, emotive, complex model repre-
senting a user in a graphical form that ranges from actual
resemblance of the human user to a talking fish or a robot.
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Massive2 software that offers facilities for creating a given
number of avatar clones and further modification of those
clones by introducing a slight variation into their appearance
features. This technique was widely used in Peter Jackson’s
The Lord Of The Rings film trilogy3 for simulating battles.

The approach in generating crowds, taken by systems like
Massive, is to use a number of manually created avatar
shapes and randomly modify some shape parameters and
textures to introduce the variety. To avoid non-plausible dis-
tortions of the resulting shapes, the features being changed
are often limited to randomly selecting a clothing texture
from a predefined list or modifying the height and width
of the avatar. Thus, such systems are limited in terms of
introducing a variety into crowds.

What is often desired in crowd simulation - is to have a di-
verse crowd with representatives of various genders and age
groups, having different appearance, while still consistently
maintaining the distinct features of their ethnic group. Sim-
ulating such diverse groups requires identifying the charac-
teristic features that represent a given population and defin-
ing the acceptable range of variation in these features, as well
as their intelligent manipulation. When generating crowds
of avatars in an automatic fashion, without satisfying these
conditions, either the believability of the crowd appearance
or its diversity will be very limited.

Nowadays, most modern game engines and virtual worlds
offer facilities to design parametric avatars [15], where avatars
can be edited using hundreds of individual parameters (head
shape, nose length, eye size, etc.). Such parametrisation of-
fers enormous flexibility in generating unique avatar crowds
and calls for revisiting existing crowd generation techniques.

Having parametric avatars allows to go beyond standard
randomization techniques [18] for the crowd simulation. We
suggest to introduce diversity into avatar appearance by
mimicking genetic rules of reproduction present in nature.
Under normal circumstances, humans and animals, when
producing their offsprings, manage to achieve enough vari-
ety in the appearance of their children, while also preserving
their distinct personal and ethnic characteristics, as well as
ensuring that their body shape and facial features remain
within the acceptable range of variation for the given species.

Thus, in this paper, we introduce an algorithm that gen-
erates visually unique avatars following the representations
and techniques used in genetic algorithms theory [7] (e.g.
crossover and mutation). This algorithm generates individ-
uals that respect the visual, racial, cultural and behavioural

2http://www.massivesoftware.com/ (last access 07/2012)
3http://www.lordoftherings.net/ (last access 07/2012)
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features of a defined population as well as genetic inher-
itance of these features. Using genetic mutation, we add
novelty to generated avatars. In addition to the visual as-
pects of crowd simulation, our approach is also applicable
to generating unique personalities of virtual agents.

Our work focuses on generating large crowds, where each
individual is a unique, distinguishable member of some eth-
nic group (see Figure 1). It should not be treated as an
attempt to closely mimic genetic reproduction found in na-
ture. Simulating the underlying processes behind forming
body tissues and bone structure based on the DNA code
is quite complicated, as those mechanisms are not yet fully
understood and are not computationally feasible at present.
Instead, our algorithm uses the same basic principles, but
deals with a high-level representation of genetic code and a
very straight-forward technique for manipulating it to pro-
duce the desired changes in the avatar appearance.

Figure 1: Generating Diverse Ethnic Groups

In our approach, we first isolate and quantify visual fea-
tures of an avatar (e.g. nose width) and then use approaches
and techniques from genetic algorithms rather than mim-
icking biological behavior. Genetic algorithms belong to
the field of evolutionary computing where computational ap-
proaches in optimization seek inspiration from evolution and
genetics.

Isolation and quantification of visual features of an avatar
can be a tedious process, but by doing so we can achieve a
great level of detail and variety in generated avatars [10]. For
example, for heads of human avatars some can represent the
craniofacial measures quantified by their minimal and max-
imal values [21, 20]. Limiting these features by an interval
allows us to better control the appearance of an avatar, pro-
hibiting the creation of unwanted (e.g. implausible) results.
Also, we can combine them to represent physical properties
(e.g. fatness), or even emotions (e.g. happiness). Another
possibility is to define different intervals of quantification for
visual features of children and adults.

A big advantage of isolating visual features is the reusabil-
ity with different 3D models. It also becomes possible to
manipulate non-human 3D models while using the same ba-
sic principles (e.g. manipulate a visual feature of eye-size in
a 3D model of an animal).

When visual features are isolated and quantified, all their
values for an individual are extracted to form the chromo-
some. A specific value of a visual feature is named gene.
Genetic algorithms provide different operators that combine
(i.e. crossover) and manipulate (i.e. mutation) parent chro-

mosomes to generate their children with a defined level of
novelty. Next, we explore the related work in avatar genera-
tion, describe our approach and discuss experimental results.

2. RELATED WORK
Avatar generation and crowd generation methods vary in

how to model a single individual and in the approach of mak-
ing every crowd member unique. In one of the first attempts
to generate a population of unique 3D characters, [4] created
a system that generated facial models. The model was based
on randomization of anthropometric measures applied to B-
spline surfaces. Later, [2] used Principal Component Anal-
ysis (PCA) to analyze datasets of facial features to extract
base vectors from the face, and used these vectors to gen-
erate new, unique faces. This work was extended by [1] to
generate the whole body of an avatar. A different approach
was taken by [12] and [18] who used variance of attachments
and textures over a predefined set of avatars, where avatars
mainly differed in size and the type of textures, while still
appearing as clones that undergone a minor modification.

In other works, authors considered different means of crowd
generation and isolated specific visual parameters (i.e. body
and clothing) which deform related 3D models. The values
of these parameters can be randomized in order to produce
unique crowd members [16] [11].

Identification of such visual parameters inspired researchers
to encode their values into genetic structures and apply ge-
netic algorithms theory to generate unique crowd members.
Ventrella [19] was one of the first to discuss the possibilities
of storing and modifying the avatar properties in a “chromo-
some”, represented by an array of integer values and then
modifying those properties to generate a 2D sketch of an
avatar with different appearances. Technological details of
this work, however, were not explained and the main focus
was limited to generating a single avatar, not a crowd [19].

While Ventrella worked with 2D sketches a similar ap-
proach was taken by [10] to generate 3D avatars. Authors
in [10] presented a method for encoding a rigged 3D avatar
into a list of bones and their dimensions with further modifi-
cation of those using genetic principles. The resulting avatar
generation method often produced unrealistic body shapes
and was intended to be used in a supervised manner, where
a user was presented with a large list of possible avatars and
was expected to manually select the most suitable one.

The most similar work to our approach was done by [21,
20], who investigated generating an avatar’s appearance us-
ing genetic inheritance principles. Genetic inheritance was
approached from the biological perspective, where each child
chromosome holds a copy of mother’s and father’s chro-
mosome. During the reproduction process, child chromo-
somes were duplicated, combined and then split into four
”gametes”. Through the process called “fecundation” a fa-
ther gamete and a mother gamete are combined to produce
the new child’s chromosomes. The parents’ gene values from
the chromosome are combined to visualize the final value.
This method relied on direct modification of 3D meshes and
was limited in the number of parameters that can be modi-
fied, and similar to [10] often produced non-plausible results.

We advance existing work by applying genetic algorithms
rather than mimicking biological evolution like [21]. Similar
to [10], we encode visual properties as genes, which form
chromosomes, but rather than using meshes or bones - we
rely on fully parametric avatars. We use genetic operators
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to generate new, unique individuals, which due to paramet-
ric nature will be limited to plausible characters. Our con-
tributions include the definition of new techniques applied
during replication, such as deep inheritance, which provides
the possibility of inheritance of features from indirect an-
cestors. Another contribution is the definition of genotype
rules, which can define key ethnic features that have to be
preserved during replication, or dependencies between vi-
sual features, e.g. making an avatar fat. As a result, we
can generate ethnic crowds with a high degree of variation
across hundreds of body features, while also maintaining the
similarity with avatar ancestors in a classical genetic sense.
This allows us to simulate avatar groups of unlimited size,
where every individual has a unique appearance, while at
the same, is identifiable as the member of its ethnic group
based on characteristic appearance features.

3. AVATAR GENERATION
In this section, we propose a general-purpose model for

automatic generation of 3D avatars, which can be deployed
in modern video games or virtual worlds. This model is not
limited to human avatars and can be used with other avatar
types (e.g. humans, animals, fishes, robots, orcs) as long as
they have distinguishable visual features. Next, we focus on
generating individual virtual agents with unique appearance
from a small sample of manually designed avatars.

3.1 Genetic algorithms
Genetic algorithms (GA) belong to the larger class of evo-

lutionary algorithms, which generate solutions to optimiza-
tion problems using techniques inspired by natural evolu-
tion, such as inheritance, mutation, selection, and crossover.

In the history of evolutionary computing, four important
paradigms served as a base activity of the field: genetic algo-
rithms [7], genetic programming [9], evolutionary strategies
[14] and evolutionary programming [5]. Their differences lie
within the terminology behind the algorithms, the reproduc-
tion operators and selection methods. In our work, we use
the terminology and procedures from genetic algorithms.

A traditional genetic algorithm defines and manipulates
individuals at the level of their chromosomes, where a chro-
mosome is represented as a fixed-length bit string. Each posi-
tion in the string is assumed to represent a particular feature
of an individual, called gene. Usually, the string is “evalu-
ated as a collection of structural features of an individual,
which have little or no interactions” [17]. To produce a new
generation of individuals, we combine parent’s chromosomes
using a crossover operator. Combining parent’s genes allows
gene inheritance. To introduce novelty in the population, we
apply mutation to the current chromosome.

Genetic algorithms are employed in numerous fields, such
as search, optimization and machine learning [6]. In most
of these cases GA are used as a search heuristic that mimics
the process of natural evolution. In this approach, the GA
are treated as an optimization algorithm utilizing a fitness
function to select a partial solution of the original problem,
till reaching some predefined threshold for suboptimal solu-
tion.

In our approach, we are not using GA as an optimization
algorithm. This is why we do not use the selection and
focus only on crossover, mutation and inheritance. In the
following sections, we provide the formal representation of
genetic data and operators. Then we contemplate our design

of deep inheritance, also called gene skipping, and explain
the generation algorithm.

3.2 Formal Representation of Genetic Data
In this section, we formalize genetic concepts used dur-

ing the avatar generation process. First, we define visual
information or definable visual traits of an avatar. For the
purpose of generation of unique avatars such information
needs to: (i) express the specific appearance trait of an in-
dividual and (ii) must be quantifiable. Therefore, this in-
formation must hold the quantifiable visual descriptors of
an individual. For example, “height” visual descriptor can
be quantifiable by a numeric interval, from 0 to 100, with 0
being short to 100 being tall (respecting the natural height
of humans). Moreover, a visual descriptor can quantify the
shape, texture or color of an avatar’s body part. We define
the visual descriptor as the visual feature (see Table 1):

Definition 1. A visual feature holds a quantifiable de-
scriptor of a body part of an avatar. It is defined as vf = {Id,
Name, Value, Interval, Minimum, Maximum} where:

1. Id is a unique integer identifier, id ∈ I

2. Name is a string that identifies the visual feature,
name ∈ S

3. Interval defines the range of visual feature values with
textual descriptor of Minimum value (e.g. short) and
Maximum value (e.g. tall).

Id Name Interval Minimum Maximum Gene

33 Height [0,100] Short Tall 81
45 Nose Size [0,100] Small Big 21
67 Arm Length [0,100] Short Long 27
80 Gender {0,1} Male Female 1

Table 1: Examples of definitions of visual features

Using our approach, each avatar is first described by a list
of visual features. These features should thoroughly charac-
terize its appearance. When such list is defined, we quantify
the values of visual features into genes. Genes are real or
boolean values of visual features, which allow us to perform
genetic operations, such as crossover and mutation.

Definition 2. A gene g ∈ R∪B represents a real or boolean
value of the visual feature g = vfvalue (i) to quantify the
presence of the visual feature, g ∈ B; (ii) to quantify the
strength or a position of a feature (e.g. height with values
close to minimum representing short avatar and values close
to maximum representing a tall avatar), g ∈ R.

The ordered set of avatar’s genes is called chromosome.
A chromosome holds the complete genetic information of an
individual. Order of the genes in a chromosome is specified
by genomic sequence.

Definition 3. A genomic sequence defines the genetic
composition of a chromosome of a specific group, forming
a representative gene ordering of a species or group. A ge-
nomic sequence GS for a chromosome of length n is a set
of indexes which define the ordering of genes in the chromo-
some: GS = {i1, i2 . . . in}.
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Definition 4. A chromosome of length n, cn, is an or-
dered list of n genes g1, g2 . . . gn, where gene order is given
by a genomic sequence GS, that is cn = {gi1 , gi2 . . . gin}
where i1, i2 . . . in ∈ GS.

A chromosome identifies all visual features of an individ-
ual; thus, it is possible to analyze chromosomes of an existing
population and identify the genes that are common for a spe-
cific ethnic group. These genes are marked as ethnic-specific
and they are modified only steadily during the reproduction,
in order to maintain the ethnic-specific features.

Furthermore, to operate with the genetic inheritance in
population we store all the parent-child relationship infor-
mation in a genealogy tree. As a result, it allows us to nav-
igate within the relationships of the population. This tree
provides information on ancestors or siblings of the gener-
ated avatar and provides access to their chromosomes. Its
name comes from the graphical representation where the
family ancestors are visualized in the tree-like structure, also
called as family tree. A genealogy tree is usually represented
as a directed acyclic graph (see Figure 4).

3.3 Formal Definition of Genetic Operators
In our approach, we first define the initial population, that

characterizes the base groups of population. Members of
these groups have distinguishable visual features that de-
fine such group (e.g. asians with asian eyes, africans with
african skin). Then, we use this characteristic information
to create new individuals. Therefore, we may refer to our
generation process as to reproduction. During reproduction,
we use the information stored in chromosomes of parents
and combine and modify them using a genetic operator to
reproduce chromosomes of new unique individuals.

In the previous section, we have formalized genetic con-
cepts related to the reproduction process, that is genes, chro-
mosome, genomic sequence and genealogy tree. In the fol-
lowing sections, we define all the genetic functions and op-
erators. Such operators are responsible for crossover, mu-
tation and inheritance of genetic information from parents.
Moreover, we introduce the genotype rule a mechanism to
explicitly control the generation process, preserve the group
characteristic visual features and introduce relationships be-
tween genes. Our algorithm first combines parent chromo-
somes using the crossover operator and then uses gene skip-
ping to inherit some genes from its deeper ancestors. Next,
to introduce novelty, it mutates the produced chromosome.
Finally, using a set of predefined genotype rules, it adjusts
this chromosome to respect the population group properties.

3.4 Crossover
Crossover is a genetic algorithm operator that is used to

vary and combine the genetic information stored in chromo-
somes from one generation to the next one [17]. Analogous
processes from biology are genetic reproduction and biolog-
ical crossover. In this process, a crossover function selects
and combines the genes from one or more parents to create
a new child chromosome. We formalize different crossover
operators. Some operators (i.e. clone, split) are traditional,
coming from the genetic algorithm theory, some are defined
by us to meet our needs (i.e. exchange, fuzzy). The first tra-
ditional crossover operator is clone operator, which copies
the genetic information directly from one of the parents.

Definition 5. Given the mother chromosome cm consisting

of genes cm = gm1 gm2 . . . gmn and the father chromosome cf

consisting of genes cf = gf1 g
f
2 . . . gfn a clone operator ⊕q :

C × C → C is defined as cm ⊕q cf = gq1g
q
2 . . . g

q
n where q is

either denoting mother (m) or father (f) genes.

Cloning is the simplest and fastest crossover technique,
but it does not provide many functionalities in mixing ge-
netic information from parents. The simplest crossover op-
erator that allows us to combine this genetic information is
the split operator (in GA terminology also known as one-
point crossover [17]). Figure 2 contemplates the operation
of the split operator. This technique splits the chromosome
after a specific gene, called split point, and all genes on the
left of this split point are copied from one parent, and all
genes on right are copied from the other one. The split point
specifies a father-mother ratio, rfm, meaning what percent-
age of genes should be copied from mother and which from
father. The split technique is applicable to more parents,
where we select one split point for each additional parent.
Formally:

Definition 6. Given the mother chromosome cm consisting
of genes cm = gm1 gm2 . . . gmn and the father chromosome cf

consisting of genes cf = gf1 g
f
2 . . . gfn and the split point 0 ≤

s ≤ n, a split operator	 : C×C → C is defined as cm	cf =
gm1 gm2 . . . gms gfs+1 . . . g

f
n

Mother

Father

Child
Split Point

Figure 2: Crossover technique called “split”

Previous crossover operators allow none, or very limited
mechanisms for combining and experimenting with genetic
information from parents. A flexible crossover operator,
is the exchange operator. This operator combines parents’
chromosomes by randomly selecting two complementary sub-
sets of genes from parents and joining them. Formally:

Definition 7. Given the mother chromosome cm consist-
ing of genes cm = gm1 gm2 . . . gmn , the father chromosome
cf consisting of genes cf = gf1 g

f
2 . . . gfn and the exchange

selection function e : G × G → G that for input father
and mother genes outputs only one of them, we define a
crossover exchange operator ⊗ : C × C → C as cm ⊗ cf =
e(gm1 , gf1 ) · e(gm2 , gf2 ) . . . e(gmn , gfn).

The process of gene exchange is shown in Figure 3, clearly
marking genes selected from mother and from father. The
number of genes selected from the father and mother is con-
trolled by the father-mother ratio.

For our purposes, we define a new crossover operator named
probabilistic fuzzy operator. This operator is similar to ex-
change operator, but rather to copy the exact values of par-
ent genes it combines values in the interval given by the
values of genes from the father and mother. This operator
brings even more variety into the generation process. We
use this operator to evaluate our approach in Section 4.

Definition 8. Given the mother chromosome cm consist-
ing of genes cm = gm1 gm2 . . . gmn , the father chromosome cf
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Mother

Father

Child

Figure 3: “Gene exchange” crossover technique

consisting of genes cf = gf1 g
f
2 . . . gfn, the parent gene se-

lector function sirfm : 2G → {0, 1} which for position i,
where 0 ≤ i ≤ n, selects either mother or father gene
depending on probability given by the father-mother ratio
rfm and the fuzzy function f : I → R which for gene on
position i selects a random value in the interval given by
f(i) = [s(i), (gmi − gfi )/2], we define a fuzzy crossover oper-
ator � : C × C → C as cm � cf = f(1) · f(2) . . . f(n).

We can define even more crossover operators, but for our
purposes, the split, exchange and fuzzy are enough. An
example of custom crossover operator would take the arith-
metic average of mother and father gene values.

3.5 Inheritance and Gene Skipping
Looking at ourselves in the mirror and analyzing our vi-

sual appearance, most probably we find visual traits from
our parents. Nevertheless, many of our traits go even deeper
into our ancestry tree, and sometimes we look more similar
to our grandparents than to parents. Inheriting visual and
behavioral features from our predecessors is possible due to
a process called gene skipping. Although, sometimes our vi-
sual features have little similarity with our ancestors and are
the result of mutation or are altered by some external factor
(see Section 3.6).

Ancestry Level 1

Ancestry Level 2

Ancestry Level 3

p(2) = 0.05

p(3) = 0.01

Generated Avatar

Figure 4: “Gene skipping”, where p(n) denotes the
probability of inheriting gene from ancestry level n

Gene skipping is a natural genetic process that occurs
during the reproduction process, when we obtain the ge-
netic information from our deeper ancestors. Such genetic
information does not only alter our appearance, but also
behavior, personality and predispositions.

Figure 4 contemplates the process of gene skipping. In
our approach, this process becomes active after combining
chromosomes using a crossover operator. For each gene
in the chromosome, we evaluate the possibility of inherit-
ing this gene from our ancestors. The probability value is
bound to an ancestry level. Ancestry level of our parents is
1. Our grandparents are our second closest ancestors, their
level is 2, great-grandparents have level 3 and so on. For
a given gene, we define the probability of skipping it from
a predecessor in ancestry level n as a quadratic function

p(n) = 1
5×2n

, where n ≥ 2. We have not found unified and
exact values of such probabilities in the literature; therefore,
we have modelled it to reflect the quadratic decrease with
relation to older ancestors. In this manner, there is a 5%
probability of inheriting a given gene from our grandparents,
2.5% from our great-grandparents, 1.25% from great-great-
grandparents. The gene skipping technique introduces an
interesting level of variability of avatar appearance. Next,
we present another genetic operator called mutation, which
further extends the variability of generated results.

3.6 Mutation
In genetic algorithms, mutation is a genetic operator used

to provide diversity from one generation to the next. Muta-
tion alters one or more gene values in a chromosome from its
initial state. Using mutation, the solution may change en-
tirely from the previous solution. Hence a genetic algorithm
can come to improved solutions using mutation [6].

We use mutation to bring more variability to generated
avatars, allowing them to have new visual traits, unknown
to their ancestors. In our case, mutation is performed by
randomly selecting a specific number of genes and modify-
ing their values. The new value is either random, or taken
from a specific interval (e.g. ± 20% of parent value). The
mutation level is expressed by the percentage of the mutated
genes from the total number of genes. In the bottom of the
Figure 7, we see a woman avatar, PintoLae2 that is signif-
icantly different from his parents due to the high level of
mutation set to generate this avatar.

3.7 Genotype Rules
In genetics, the genotype is a genetic makeup of a cell,

an organism, or an individual. In another words, it is a
measurement of how an individual differs within a group of
individuals or species. We have borrowed this specific term
for a mechanism that allows us to define the characteristics
of individuals or population groups, using genotype rules.

We propose genotype rules to provide precise control over
values of individual genes during the reproduction process.
It is a powerful mechanism, that allows us to define the
characteristics of a population group and to maintain their
significant traits (e.g. asian eyes). Moreover, genotype rules
can specify the relationship between genes. Such rule can,
for example, force the inheritance of a group of genes only
from one parent, depending on the gender of the generated
avatar. Further we illustrate it on an example of generating
female avatars with “ideal” breast-waist-hip proportions.

A genotype rule modifies the gene value of the reproduced
chromosome depending on the other gene values stored in
this reproduced chromosome, as well as gene value stored
in any of its ancestors. Genotype rules use the selection
function that allows them to select the gene value from its
own chromosome or from a chromosome of a specific relative.
The input of this selection function for gene n is a string,
which encodes the full path to the given individual.

Definition 9. A gene selector function sg : S∗ → R∗
is a recursive function which returns the value of a specific
gene g from one or several relatives. Relatives are selected
depending on the input string s in the form s = X1 ·X2 · . . . ·
Xm where Xk|k≤m ∈ {self , parent, child, sibling}∗. Values
of Xk represent standard tree node selection functions and
their concatenation specifies the path to specific relatives.
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Examples of input strings S∗, to the gene selector function
follow the subscript notation (i.e. selectionFunctiongeneName)
with the gene name geneName of some selected individual
appearing under the selection function name selectionFunction:

Avatar: self
Father: parentgender = ’male’
All my brothers that are taller than me:
siblinggender = ’male’ ∧ siblingheight > selfheight

Definition 10. A genotype rule for gene gi is a function
rgi : S1 × S2 × . . . Sn → R which for a given input s1, s2
. . . sn, where sk|k≤n is a gene selector function, returns the
value of gene gi.

Definition 11. A genotype is a set of genotype rules that
characterizes a specific population group or an individual.

1 432 5 6

Genotype Rule: rg5(     ,     ,     ) = 

S1

S2

S3

Figure 5: Selection process for rule rg5 : S1 × S2 × S3

Figure 5 contemplates the process of selection of genes for
the genotype rule evaluation. Next, we show an example of
how the genotype is used to characterize a population group
and to specify a gene relation. For clarity, we do not use the
number index of a gene rgi but the name of related visual
feature rgender that represents gene gi.

Example: Ideal ratio
In this example we generate female avatars with breast-

waist-hip ratio of (90-60-90). These dimensions are specified
with four rules, where the diversity of generated values are
respected by using them as measure to the new “ideal” pro-
portions.

1. rgender = “female”

2. rbreasts = 3
8
(sbreats(self) + swaist(self) + ship(self))

3. rwaist = 2
8
(sbreats(self) + swaist(self) + ship(self))

4. rhip = 3
8
(sbreats(self) + swaist(self) + ship(self))

The first rule defines that all generated avatars will be
female. The remaining rules encode that breasts should be
3
8

(same as 90
240

) of the ratio and hip 2
8

of the ratio and waist
3
8

of the ratio. This example shows how easily we can model
relations between genes.

3.8 Algorithm
Algorithm 1 uses all the mechanisms introduced in the

previous section. First, it combines the chromosomes from
father and mother, using a specific crossover operator and
creates a new child chromosome. Second, if allowed, per-
forms a gene skipping using the new chromosome and in-
formation stored in the genealogy tree. Gene-skipping uses

pre-defined probabilities to decide if a given gene should be
skipped. Third, the algorithm mutates a specific amount of
genes in the new chromosome. This amount is set by the
mutation level. At last, the chromosome is modified accord-
ing to genotype rules. The algorithm repeatedly executes all
rules till no change in chromosome is detected. The gener-
ated chromosome contains all the information about visual
appearance of a new unique 3D avatar. The values of genes
of generated chromosomes are used to render the new avatar.

Algorithm 1: Algorithm for generating an avatar

Input: genealogyTree, mother, father, crossover
operator, fatherMotherRatio, mutationLevel,
skipGenes, genotype rules

Output: Chromosome representing a new unique 3D
avatar

begin
// combine parent chromosomes
chromosome ← Crossover (crossoverType,
fatherChromosome, motherChromosome,
fatherMotherRatio);
// gene skipping
if skipGenes then

chromosome ← SkipGenes (genealogyTree,
chromosome);

// mutate chromosome
chromosome← Mutate (chromosome, mutationLevel);
// adjust chromosome according to genotype
// execute the rules till no change is performed
repeat

adjusted ← false;
foreach (rule ∈ genotype) do

adjusted = adjusted ∨ ExecuteRule (rule,
chromosome);

until adjusted = false;
return chromosome

Figure 6 shows the interface of the Genetic Mixer tool4,
that implements all the features of the presented Algorithm 1.
We used the Genetic Mixer to generate examples in Figure 7.

Figure 6: Interface of the Genetic Mixer tool

Next, we evaluate the variability of the generated avatars
and the performance of the algorithm.

4. EVALUATION
We have evaluated the generation algorithm on the di-

versity of the resulting avatar crowd depending on different

4see supporting video at http://youtu.be/Re7oVUFGis4
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Figure 7: Avatars generated using our method. The top row forms the start population. The label of every
figure contains following information: Name [crossover, father-mother ratio, mutation level]

input parameters of the algorithm, that is crossover opera-
tor, father-mother ratio and mutation level. We have also
tested if characteristic ethnic features of individuals are pre-
served within their children. Some members of the resulting
generated crowd are shown in Figure 7.

For our purposes, we have manually designed six avatars,
three females and three males that form the base population
of our virtual world. Two avatars are asian (Kim and Lae),
two are african (Pinto and Tanta), one caucasian (Simone)
and one arab (Marco).

To highlight our approach to identifying characteristic ap-
pearance features - we have designed the base population so
that every avatar has white hair colour. One of the hypothe-
ses that was tested during evaluation is that our algorithm
will correctly identify this appearance feature as being char-
acteristic for the given ethnicity and no or little mutation
will be performed in relation to this feature, so that it is
preserved in every member of the generated crowd.

We have isolated 200 visual features of each avatar, that
are provided by OpenSimulator5 and that define shape, skin,
eyes and hair. Each of these visual features represents a
gene in an avatar’s chromosome. For the generation, we
have used two crossover operators, fuzzy (marked as F in the
avatar captions) and exchange (marked as E in the avatar
caption). We have used different father-mother ratios and
different mutation level. Each generated child is named by

5http://www.opensimulator.org (last access 09/2012)

combining the father’s and mother’s name (e.g. child of Kim
and Lae is named KimLae).

In the first row of Figure 7, we see all six avatars from our
base population. In the second row, we see their children.
Our system was able to correctly identify hair color as an
important characteristic feature of the generated ethnicity,
so all the generated avatars have white hair. KimLae was
generated using the fuzzy with the ratio set to 50%. We can
clearly see the resemblance from both father and mother.
She has her father’s eyes, but her mother’s chin. Nose width
is somewhere between father and mother. We can clearly
see that she is asian. The same parameters were set for
TantaPinto and we can see that she is black, resembling both
parents. If we now focus on KimSimone and her brother
KimSimone2, we see that they are both generated using the
same parameters with significantly different results. This
is due to the random nature of fuzzy operator and the use
of mutation, which was set to 2%. When we look at the
grand-kids of the base population avatars we can see how
their visual features are combined.

In the last row we present a selection of avatars that we
generated during the generation of 3000 avatars from our
base population. PintoLae2 is significantly different from
others due to the high level of mutation set to 10%. It’s ev-
ident from the results that the algorithm generates a large
variety of visually acceptable avatars respecting the genetic
inheritance of ancestor features. Although, we were able to
generate 3000 avatars, we are unable to display them all at
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once, as we are limited by the capabilities of the OpenSimu-
lator allowing to host a maximum of 100 avatars, but recent
research on using Distributed Scene Graphs (DSG) [8] al-
lowes simultaneous participation of thousands of users.

We have also measured the average speed of generation of
one avatar during the generation of crowd of avatars. The
speed of the algorithm linearly depends on the length of
the chromosome, that is its time complexity for m agents
is O(m× n) with respect to the length of a chromosome n.
We have generated 3000 different avatars, using the most
complex fuzzy operator with mutation level set to 2% and
on average the algorithm generated a new avatar in 305 ms.
The generation was performed on a MacBook Pro with 2.6
GHz Intel Core 2 Duo processor and 4GB of RAM.

5. CONCLUSION AND DISCUSSION
We have presented an algorithm for generating a diverse

ethnic group of unlimited size from a small sample of manu-
ally designed 3D avatars. Genetic principles of inheritance,
crossover and mutation are applied to the sample population
to create new visually unique group members. Predefined
genotype rules allow us to preserve important appearance
features that are characteristic for the given ethnicity.

Generating large ethnic groups is important in domains
like virtual heritage [3], where not only avatars must look
different, but also have to appear as members of the same
culture. In virtual heritage it is often needed to interact
with individual avatars and inspect them at close proximity,
so the use of cloning or colour substitution (as in [13]) is not
sufficient as it is likely to be noticed. Also, introducing di-
versity by using a fully random approach to modifying indi-
vidual parameters (as in [10]) may result malformed avatars
and would modify the important appearance features that
define the ethnicity of the simulated group.

It is important to mention that in simulating ethnic groups
it is undesired for generated agents to have very close re-
semblance with their “genetic parents”. Thus, the proposed
genetic algorithms approach is also more beneficial than a
biological approach of [21] as it results increased diversity,
more transparent execution and better control over results.

The key drawback of our method is that it requires to
have avatars defined in parametric form and to allow for
quick modification of individual avatar parameters on the
fly. However, many modern game engines, virtual worlds as
well as popular 3D modelling packages support parametric
avatars and provide the corresponding visual tools.

Future work includes extending this approach to generat-
ing agents with diverse personalities, as well as conducting
an advanced study similar to [13], where the diversity of the
generated avatars, resemblance with ancestors and preser-
vation of ethnicity are evaluated in a more formal manner.
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