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Figure 1: Using Case-Based Planning for Simulating Everyday Life in Ancient Mesopotamia, 5000 B.C.

ABSTRACT

In this paper we discuss building large scale virtual reality recon-
structions of historical and cultural heritage sites. One important
aspect of developing such simulations is how to populate virtual re-
ality environments with crowds of virtual agents that are capable of
simulating everyday life of the reconstructed society in a complex
way, while respecting the cultural and historical accuracy of agent
behaviour. In many commercial video games such agents either
have very limited range of actions (resulting primitive behaviour)
or are manually designed (resulting high development costs). In
contrast, we propose to build large virtual agent societies following
the principles of automatic goal generation and automatic planning.
Automatic goal generation in our approach is achieved through
simulating agent needs and then producing a goal in response to
those needs that require satisfaction. Automatic planning refers to
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techniques that are concerned with producing sequences of actions
that can successfully change the state of an agent to the state where
its goals are satisfied. Classical planning algorithms are computa-
tionally costly and it is difficult to achieve real-time performance
for our problem domain with those. We explain how real-time per-
formance can be achieved with Case-Based Planning, where agents
build plan libraries and learn how to reuse and combine existing
plans to archive their dynamically changing goals. We illustrate the
novelty of our approach, its complexity and associated performance
gains through a case-study focused on developing a virtual reality
reconstruction of an ancient Mesopotamian settlement in 5000 B.C.
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1 INTRODUCTION

3D Visualisation and Virtual Reality simulation are popular tech-
niques for reconstructing sites of high historical or cultural signifi-
cance. They are useful for showing how these sites were enacted
in the past and are particularly helpful when the reconstructed
physical environment is not entirely preserved or completely de-
stroyed at present. Populating the reconstructed 3D environments
with virtual agents helps to illustrate how these buildings and ob-
jects were used by people and to highlight the key technological or
cultural aspects of the simulated society. Supplying such Virtual Re-
ality simulations with virtual agents that are capable of convincing
and historically or culturally authentic behaviour beyond simple
crowd simulation algorithms is difficult and costly. Virtual agents
must be able to play different social roles, adhere to social norms,
actively use surrounding objects, interact with other agents and
even engage into interactions with humans. Modern video games
are a good illustration in regards to the potential of having such
simulations, but the cost of developing video games is very high.
For example, the estimated cost of developing Crysis 3, one of the
popular modern video games, is $66 Million [13]. Such a level of
spending is not feasible when it comes to research simulations.

In the vast majority of commercial video games, similar to Crysis
3, virtual agents! are often manually scripted. Manual scripting,
which may involve designing finite state machines, decision trees,
etc., is costly due to the high time investment required from game
developers. Very few commercial games, among which one of the
best examples is “The Sims” are focusing on automating agent
behaviour beyond simple obstacle avoidance. One of the key au-
tomation principles in The Sims [2] is to simulate agent needs (in
a similar way to the Maslow’s Pyramid of Needs [20]) and then
make agents satisfy their needs by performing actions with the
corresponding objects in the environment. Satisfying virtual agent
needs by interacting with objects, however, is essentially scripted
in The Sims too, as it involves executing manually designed finite
state machines associated with these objects. So, while simulating
agent needs allows to increase automation, manual design of the
finite state machines assigned to various objects means that the
development still remains costly.

A standard technique that is often used in the Artificial Intel-
ligence (AI) community as a substitute for a set of scripted agent
actions is planning [17]. Al planing involves automatically produc-
ing sequences of actions that lead to achieving a particular agent
goal, which in The Sims context means making the agent state
evolve to the state where the given need is satisfied. Technically
speaking, planning involves conducting a search through the action
space in order to find the desired sequence of actions. When the
action space is large, such a search is associated with significant
performance problems, which is the key reason why Al planning
hasn’t been widely adapted by game developers.

!We use this term when we refer to human-like avatars that are being controlled by
the computer, not a human user/player.

T. Trescak and A. Bogdanovych

In this paper we show how performance of Al planning can be
significantly improved and become real-time for large scale sim-
ulations. This performance improvement can be achieved by first
introducing ordering of the action space through the application
of the OCMAS paradigm. Once the action space is ordered, we can
further improve planning performance by utilising the so-called
case-based planning, where agents memorise their past plans and
try to adapt existing plans to new situations instead of generating
new plans from scratch.

The remainder of the paper is structured as follows. In order
to facilitate a reader’s understanding of the discussed techniques
we first present an example scenario related to building a large
scale historical simulation in Section 2. Section 3 introduces the
necessary background in relation to Al planning. Section 4 explains
our approach to extending case-based planning so that it can be
applied to large scale virtual agent simulations. Section 5 presents
a case study that investigates the performance issues of using our
approach for the simulation of Ancient Mesopotamia (Uruk) 5000
B.C. Finally, Section 6 provides some concluding remarks.

2 EXAMPLE SCENARIO: ANCIENT
MESOPOTAMIA 5000 B.C.

To illustrate the issues involved in building large scale historical
or cultural simulations and discuss how it is possible to automate
agent behaviour in those, we suggest to consider the simulation
of everyday life in ancient Mesopotamia around 5000 B.C. shown
in Figure 1. For this simulation we have reconstructed 3 small
ancient settlements using the settlement maps produced by the
archeologists from [8].

Based on the knowledge obtained from history experts we could
design the following simplified scenario portraying a day of an
average citizen: an average agent in our simulation should start
its day at around 6AM in the morning. Soon after waking up the
agent would eat breakfast by preparing the food from storage or
obtaining food through work. The agent would eat 4 times a day
with intervals between meals being close to 6 hours. In-between
meals the agent would work to satisfy immediate hunger or comfort.
There is hardly any recreation time. If there is, the agents should
explore the city or chat with each other.

The type of work an agent must perform depends on the social
role this agent plays in the simulation. For simplicity, consider a
scenario where each of the agents plays one of the following 4
social roles: Fisher, Baker, Potter and Shepherd. Figure 2 outlines
the key tasks that these agents must perform at work: milking
sheep, making pots, baking bread and fishing.

The first step of building the simulation involved modelling the
buildings and the settlement layout based on the results of archae-
ological excavations and information provided by subject matter
experts. The next step was to manually design the appearance of the
base population of 2 agents. Treating the appearance of the agents
from the base population as genetic code allows to automatically
generate a desired number n of the simulation inhabitants following
the approach in [25]. Given that each of these agents must play
one of the aforementioned 4 roles we can either equally allocate
the generated agents into the given 4 roles (n/4 - shepherds, n/4 -
potters, n/4 - bakers and n/4 - fishers) or come up with a way of
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specifying the role distribution in the simulated society (e.g. 20%
shepherds, 20% potters, 30% bakers and 30% fishers).

The key question this paper tackles is: once an agent has been
generated and assigned with a particular role how can we make this
agent automatically generate goals and plans, so that it simulates
believable behaviour consistent with the aforementioned scenario?

Similar to The Sims game our agents obtain their goals through
continuously tracking their simulated needs. A need can be seen as
a reservoir. When the reservoir is full, the need is fully satisfied. As
the agent progresses through the day, its needs are depleting, and
the level of the corresponding reservoirs is changing. Each agent
tracks the state of each such reservoir, selects the one that requires
immediate attention and generates a goal to satisfy the given need.
Once the agent has the goal, it performs the planning task, which
is to find the sequence of actions that lead to achieving this goal.
The process of tracking needs and generating goals is outside the
scope of this paper. Interested readers will find more details in [4].
The key emphasis of this paper is on agent planning, so next, we
discuss the planning aspect in more details.

3 PLANNING FOR VIRTUAL SOCIETIES

In traditional Al planning an agent normally has a textual represen-
tation of its current state (e.g. “hasFire, hasRawFood”) and there is a
sequence of actions, that modify its state. Each action is annotated
with pre-conditions (the state that the agent must have to be able
to perform this action) and post-conditions (that specify how the
state of the agent will change after performing this action). For ex-
ample, there could be an action called “cook”, and its pre-conditions
could be “hasFire, hasRawFood” and the post-condition could be
“hasCookedFood”. The planning process then involves performing
an exhaustive search that finds the sequence of actions that can
successfully evolve the state of the agent to the desired state. The
desired state normally has to match the post-condition of one of the
actions, so the agent can perform the backwards state space search
algorithm [23] by first finding the action (e.g. “cook”) that has its
goal (“hasCookedFood) as the action’s post-condition and then look
for an action that has a post-condition matching the pre-condition
of this (“cook”) action. The agent continues searching and building
the action sequence until the last action’s pre-condition matches
the agent’s current state. This approach works fine when there is a
small set of actions. But when both the set of actions and the num-
ber of agents is large then performing a continuous search through
the action space by all agents results in significant performance
problems. Another weakness of classical Al planning is its inability
to properly handle tasks where a high degree of interaction between
different actors is necessary. Being able to associate pre-conditions

; £
Figure 2: The Four Agent Roles: Shepherd, Potter, Baker, Fisher
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and post-conditions with multiple actors that can play different
roles and have a variety of possible states is a difficult task and even
if it is feasible, the associated search space becomes very large.

In the specific case of simulating virtual societies, it is often
required to execute and coordinate (i) agent interactions with envi-
ronment (ii) agent interactions with other agents, (iii) user-agent
interactions, as well as (iv) to model relations and interactions be-
tween agent groups. A popular way of modelling societies that
allow for such complex forms of interaction is using Organisation
Centred Multi-Agent Systems (OCMAS). The purpose of using OC-
MAS to define virtual societies is that we can group agents into
multiple hierarchical role structures, abstract agent interactions
and impose norms on agent behaviour on a group level. Thus, a sim-
ulated society can be specified through its target groups (i.e. roles)
and normative structures that shape and control the interactions of
actors (humans and agents) playing these roles.

There are various popular OCMAS architectures, such as MOISE
[16], MOISE+ [18] or Electronic Institutions (EI) [11]. Yet, in the
core of each of these OCMAS systems is a multi-agent system that
uses organisational structure to define, control and coordinate in-
dividual agent behaviour. In general, OCMAS specification can
be decomposed into three parts. First, a structural specification of
OCMAS defines agent language, roles, role relations and groups
that agents can belong to. Second, a functional specification defines
structures for agent interactions. In MOISE, a Social Scheme defines
a tree structure with agent goal in its root and each other node
defines a sub-goal. Interactions between sub-goals are modelled
using three operators, sequence, choice and parallelism. Electronic
Institutions define Performative Structures and Scene Protocols in
the form of oriented graphs. Finally, a deontic specification estab-
lishes a relation between a functional and a structural specification,
constraining execution of structural tasks to given roles and groups.
Concerning deontic specification in Electronic Institutions, each
arc in a Performative Structure and a Scene Protocol represents
an agent action (illocution) limited to given groups and roles, or
a transition, used for synchronisation purposes. Arcs also define
pre-conditions and post-conditions in form of expressions with
real variables, testing the existence and modifying agent resources
(e.g. precondition specifying that agents can make fire only if they
own at least three pieces of wood). Moreover, in EI, norms impose
further limitations on agent performance and stimulate pro-active
behaviour with agent requirement to comply with these norms.

Using OCMAS to simulate virtual societies helps to obtain a
granular control over the individual behaviour of each agent, yet it
allows for abstraction of control using agent groups. Controlling
agents on individual level involves generating their goals based
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on their current state and the state of the OCMAS system. Goals
represent either actions (or illocutions), represented by arcs con-
necting two states, or a change in agent resources (e.g. wood > 5).
To execute a goal, an agent needs to find a path from its current
state, to the arc that represents the desired action or modifies agent
state to desired values. Such path represents agent plan, consisting
of series state transformations, executing one or more actions.

The OCMAS approach is popular when it comes to simulating
virtual agents societies. Bogdanovych [3] has developed a formal
framework, named Virtual Institutions, which defines processes
needed to model and execute societies performing in (3D) virtual
environments using OCMAS approach. Virtual Institutions provide
abstractions and graphical tools that allow designing societies in
all their complexity, but they don’t innately support Al planning.

In smaller scale simulations with a limited number of actions and
action combinations, agent plans can be manually defined (static)
[5]. But with large dynamic systems, where agents execute complex
plans in a changing environment, static plans become increasingly
demanding to maintain. For example, it is difficult to pause and
resume a static plan, as an agent could have lost necessary resources
to continue the plan while executing a new plan and it is safest to
restart the plan. Also, modification or introduction of a new action
requires re-evaluation of all affected plans or creation of new ones.

Employing Al planning, also known as dynamic planning, is one
way of dealing with these limitations. But classical Al planning
approaches are not directly applicable to OCMAS. Further in the
paper, we will use the term “dynamic planning” when we refer to
Al style planning with OCMAS.

1. getWater
role: Baker
post: water = water + 1
2. getWheat
role: Baker 3

5. makeSpear

role: Fisherman

post: spear = spear + 1
6. catchFish

pre: spear >0

role: Fisherman

post: fish = fish + 1

post: water = water + 1

3. makeBread 4 4
role: Baker 3
pre: wheat > 2 & water > 1
post: bread = bread + 1 4

4. eatBread 4
pre: bread > 1
post: bread = bread - 1

hunger = hunger - 50

A
o

Figure 3: OCMAS specification

To illustrate how dynamic planning could be conducted con-
sider Figure 3, which outlines a simplified specification of a scene
protocol of a Virtual Institution with “Baker” and “Fisher” roles,
where Bakers can bake and eat bread and Fishers can catch fish
using required resources. For simplicity we do not depict all connec-
tions; you can assume that from any state you can go back to the
initial state (a). Using this specification, the left part of the Figure
4 depicts a plan creation for the agent playing the role of Baker.
The agent is currently in the state (a), it owns no resources, but
it is hungry (i.e bread = 0, wheat = 0, water = 0, hunger = 80),
and its goal is to drop hunger below threshold level, i.e. hunger <
50. The agent, using either forward or backward search, finds that
hunger drops after performing eatBread. To eat bread it needs to
obtain wheat and water to bake bread. This knowledge could be
encoded in pre-conditions and post-conditions of an action. The
right part of the Figure 4 shows a shorter plan for the same Baker
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agent and the same goal, yet it already owns some resources (i.e.
wheat = 2, water = 1, bread = 0, hunger = 80).

Figure 4: Dynamic specification

Such dynamic planning in OCMAS can be supported through
mapping the OCMAS specifications to STRIPS [12] format. STRIPS
(Stanford Research Institute Problem Solver) is an automated plan-
ner, developed in 1971, yet it also represents a formal language of
inputs to dynamic planners. A STRIPS instance is composed of (i)
an initial state, (ii) goal states, and a (iii) set of actions, where each
action contains a list of preconditions and postconditions in form of
boolean expressions. Pre-conditions contain predicates, while post-
conditions use operators modifying the state of STRIPS instance.
To solve a STRIPS instance means to find an ordered list of actions
that leads from the start state into one of the goal states, satisfying
preconditions of each action.

STRIPS is not directly suitable for dynamic planning with OC-
MAS and Virtual Institutions because Virtual Institutions employ
real expressions in predicates, while classical STRIPS only works
with boolean expressions. To perform a mapping from OCMAS
to STRIPS, we map each arc from the structural specification of
OCMAS to a new STRIPS action, where arcs in OCMAS contain pre-
conditions and post-conditions. Using STRIPS definitions, we can
use traditional planning methods. Below is a fragment of a STRIPS
definition example from the scenario discussed in Section 2 (space
limitations prevent us from publishing the complete example). The
meaning of predicates, actions and operators is self-explanatory:

e Predicates:Eq(var, x), Greater(var, x), Lower(var,
HasRole(agent, y), InState(agent, z)
e Operators: ChangeValue(variableName, newValue)
e Actions:
— name: getWater()
preconditions: HasRole(agent, ’Baker’)
postconditions: ChangeValue(water, water + 1)
— name: makeBread ()
preconditions: HasRole(agent, ’Baker’) &
Greater(’wheat’, 2) & Greater(’water’, 1)
postconditions: ChangeValue(bread, bread + 1)

At this point, we have enough mechanisms to dynamically plan
single-agent goals. Yet, dynamic planning is NP complete problem
and as a result, it is a very computationally expensive process.

The problem of STIRPS lies in its complexity, allowing to execute
only small problems in real time. The planning complexity relates
to the number of possible actions that can be considered to perform
anext planning step. Thus, the complexity is exponential in relation
to a number of plan items, i.e worst case is O(n"") complexity for

X),
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n plan items. A benefit of using OCMAS is that we can reduce the
dynamic planning complexity, by structuring OCMAS as a Hierar-
chical Task Network (HTN) [9] [4]. The idea of HTN is that similar
actions can be composed into compound actions (i.e. activities in
Electronic Institutions, sub-goals in MOISE). Similarly, complex
actions can be decomposed into several sub-actions.

Therefore, using composition to group actions into compound
actions, we reduce the planning search space. Figure 5 describes the
process of composition, where we have composed four new actions
(A, B, C and D), which grouped actions into common functionalities.
The complexity of the search space has dropped from 9° to 5° *
33 % 22 % 22 that is from 387,420,489 possible plan combinations to
450,000 combinations.

Compound Action A

(Action 1)(Action 5)(Action 8)

Compound
Action C

(o) () +

Actions: 9
Complexity: 9°

Compound Action B

Compound

Action D

A: B CandD
Actions: 5 Actions: 3 Actions: 2

Complexity: 55 Complexity: 33 Complexity: 22
Figure 5: Composition using Hierarchical Task-Networks

While structuring OCMAS as HTN certainly allows the defini-
tion of more complex scenarios in need of dynamic planning, it
does not eliminate the execution of a computationally expensive
planning task whenever agent considers a new goal. This becomes
increasingly difficult when simulating several individual agents,
for example in VR, where smooth frame-rate is very important
for the user experience. Even after ordering the action space with
the help of OCMAS and HTN it is difficult to achieve real-time
dynamic planning for a large number of agents. Figure 7 shows
the results of our experiments that aimed to analyse the effect of
dynamic planning on system performance?. The left axis represents
Frames-Per-Second (FPS); the bottom axis represents the number
of agents. It is evident from the figure that with the increasing
number of agents, the FPS becomes unstable (spikes) and comes to
halt at around 40 agents. This experiment was performed in our
simulator Vittoria (see Figure 6), on Alienware 17 (2014) computer?,
running a Virtual Institution with eight actions and four different
goals. While initial experiments were performed in the game devel-
opment environment Unity 3D%, soon we discovered that internal
complexity of the Unity 3D engine and preference on the handling
of game related elements, does not allow us to have a clear view of
the algorithm performance. Therefore, we have developed Vittoria®
simulator to evaluate OCMAS models and agent behaviour using
a visual approach with high-performance 2D graphics, to collect

2The maximum frame-rate in the simulation environment is 60 FPS
Shttps://www.laptopmag.com/reviews/laptops/alienware-17-2014 (visited 07/2015)
“https://unity3d.com, visited 07/2017

Shttps://github.com/tomitrescak/EI2
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Figure 7: Unity3D performance with dynamic planning

various statistics and measure the performance of our algorithms.
The positive aspect of this simulator is that agent behaviour de-
veloped for Vittoria can be used directly in a game development
environment Unity 3D. This allows us to simulate a period of time
in Vittoria and then visualise it in Unity 3D.

While we were able to execute 40 agents in the Vittoria simu-
lator, the unstable FPS performance and sudden FPS spikes make
it impossible to deploy this solution in VR or gaming. Therefore,
we have analysed several institutions of various complexity, the
content and variety of generated plans and realised that generated
plans are largely similar and differ only in details, such as agent
resource quantities, state of the environment and agent state.

As a result, we have stored the generated plans and if (i) agents
had matching goals, (ii) they were in the same state and (iii) their
resources and environment resources were equal, we have reused
the plan. While this solution seemed feasible, we have quickly
discovered that these conditions were too restrictive and agents
were still generating large amounts of new plans. For example,
when a stored plan would satisfy a goal of wheat = 1 for an agent
having no resources (i.e. wheat : 0), we still had to generate a
new plan for wheat = 2 for agent owning wheat : 1, although the
generated plan can be the same. This approach was significantly
inflating a case database with identical plans.

While we could tune the restrictions of storing plans, we have
instead decided to perform a study to find a possible technology
that can help us solve this problem systematically. Looking at the
planning domain, we have found a Case-Based Planning methodol-
ogy, which retrieves previously generated plans and adapts them
to a current scenario. This seemed like a good fit for our purposes.
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Figure 8: Case-Based Reasoning cycle

4 CASE-BASED PLANNING

Case-Based Planning [14] involves reuse of previous plans and
adapts them to new situations. In the artificial intelligence domain,
Aamodt et al. [1] developed Case-based reasoning (CBR) a problem-
solving methodology for reusing, combining and adapting previous
experiences to new problem situations (cases). CBR executes this
process in four steps (see Figure 8):

(1) Retrieve step selects similar cases from the case database
relevant to the current problem

(2) Reuse step adapts selected case to the new situation and
create a new case

(3) Revise step verifies the obtained solution, usually with the
help of an expert

(4) Retain step decides whether a case will we stored in the
database or not

Authors have used and adapted Case-Based Planning in a mul-
titude of different scenarios (see [24] for a comprehensive list of
applications). One of the first case-based planning systems was
CHEF, creating recipes in Szechuan kitchen. The main difference to
classic planning systems was, that it was capable of learning from
previous failures, adjusting generated recipes. While CHEF [14]
represents a strict domain specific planner, there were attempts
to create domain independent solutions [15]. For example, PRIAR
[19] system focuses purely on reuse of existing plans (no retrieve
phase). The problem of domain-independent planning is that was
proven to intractable [10], thus approaches for improving planning
cost are currently explored.

Similar to our approach, Prodigy/Analogy [7] system does not
reuse previous plans but it reuses planning decisions stored in
planning traces (in our case we reuse both plans and planning
decisions). Such traces include information on which decisions were
taken while planning, why other choices for the decision were not
considered, etc. When a new plan is constructed Prodigy/Analogy
replays stored traces, learning from previous experiences to make
valid choices.

While most authors deal with systems where response time
is not critical, some focused on real-time response capabilities of
CBP, similar to our case. Otanon et al. [22] defined Online Case-
Based Planning named "Darmok", able to play real-time strategy
game WARGUS, competing with human players. Their system can
retrieve and adjust cases in real time, yet requiring initial database
of cases, created from annotated traces of human expert players.
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In most of these systems (apart from PRIAR), with a robust data-
base of cases, CBP using the CBR approach can explore similarities
in existing cases, devise new solutions and eliminate the neces-
sity of performing dynamic planning. This can greatly increase
the efficiency of plan creation. Yet, under specific conditions CBP
can become even more complex then dynamic planning itself and
the plan quality can deteriorate [21]. As a result, we add specific
constraints to the Reuse step. Next, we introduce a structure of
stored cases and processes involving all four stages of a CBR cycle.

4.1 CBP Case

Before we proceed with the description of a CBR cycle, we need to
define the structure of a stored (CBP) case. The strength of a CBR
and CBP approach (further we only assume CBP) is its efficiency in
a specific domain, where CBP cycle is tightly bound to the domain.
Yet, it is also its weakness as CBP systems cannot be reused or
shared between domains. In scenarios of our interest, we partially
overcome this deficit by defining a CBP system that works with
OCMAS, allowing us to define various agent and societal models.
The structure of a CBP case defines the situation at which agent
encounters when the plan is executed, and the effect of plan steps
(i.e. actions stored in a plan step) on its resources. We assume
an agent resource to be a property of agent with a real value. In
Electronic Institutions agent properties are defined for each agent
role (e.g. Fisher role defines a property fishCount, spearCount, Baker
role defines a property breadCount). Before the main definition, let
us define the individual plan item of a plan stored in a plan case.

Definition 4.1. We define n-th plan item py, as tuple (a, c, A" (r)),
where:
a is a name of an action performed,
c is an arc that executes action a in OCMAS system,
r is agent resource,
cpost (r) is a value of a resource r after performing action in
arc ¢, and
A" (r) is a function, where A%(r) = 0 and A™(r) = A*~1(r) +
¢post (1), describing the change in value of agent resource r;
when performing the plan item pj,

Definition 4.2. We define a plan case C as tuple (s, P, A™X, Ami"),
where:

e sis the agent’s current position in OCMAS system (i.e. state)

e Pisan ordered list of plan items, p € P

e A™AX(r) is a function, that for resource r returns its maxi-
mum accumulated value increase during the execution of a
plan of length n.

e A™i(r) is a function, that for resource r returns its maxi-
mum accumulated value decrease during the execution of a
plan of length n.

For example, Table 1 depicts a plan case from the Uruk 5000 B.C.
Please note, that each arc is specified as sy — ¢y — sz, where sy
represents a "from" state of the connection ¢, and s, represents a
"to" state of ¢y

Note that A™" contains only one item, as during plan execution
only hunger resource’s value has decreased, resulting in the agent
having less hunger than the initial value. While other resource
values dropped as well (e.g. water, wheat), overall their value did
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not drop below zero in relation to the start of the plan. In other
words, if an agent would stop the plan at any given step, it would
not end up with less water and wheat than when it started. On
contrary, A™%* contains more items. For example, if the agent
would stop the plan execution after step three, it would end up with
two units of water and one unit of wheat (hence the increase).

State [Main/Idle (main activity, state idle)

Plan

(1) getWater, s — ¢; — sg, water: +1

(2) getWater, sp — ¢; — sg, water: +1

3) getWheat, s — ¢z — s, wheat: +1

(4) makeBread, s — c¢3 — sg, bread: +1, water: -2, wheat: -1
(5) eatBread, s) — ¢4 — s¢, bread: -1, hunger - 50

A™Max \water — +2, wheat — +1, bread — +1

A™i" [hunger — —50

Table 1: Plan case from Mesopotamia 5000 B.C.

4.2 Retrieve

With the definition of the stored case, we are ready to specify the
Case-Based Reasoning cycle. In this section, we define all processes
for case retrieval. This process is depicted in Figure 9. First, let us
describe the structure of agent goals.

4.2.1 Resource-Based Goals and Case Satisfaction. The Retrieve
stage of the CBR cycle is responsible for selecting one or more cases
that are similar to the current problem. In our case, the similarity
of cases is given by their potential to satisfy agent goals. Goals in

OCMAS systems are often represented as actions or illocutions (e.g.

eatBread). For simulation of large societies of various cultures, we
find this too restrictive and prefer goals modelled by the change in
agent resources. Using such goals, we can create goals and generate
plans more loosely. For example, goal religiousSatisfaction
> 0.5 requires to maintain religious satisfaction above threshold
level for all agents belonging to any religious group, which can
be performed by several actions, e.g prayInChurch (Catholics),
prayInMosque (Muslim), or goToBeach (atheists). Moreover, with
resource-based goals, we can either try to increase a resource value
(e.g. wheat), or lower it (e.g. hunger).

If we specify agent goals as either positive or negative change
in agent resources, we define:

Definition 4.3. Case C = (s, P, A™3%  A™™) weakly satisfies goal
g with n plan items p; <, € P of agent with s resources r; <, if:
(1) Agent state is the same as start state of arc in p;
(2) g is increasing value of resource r;j by k, and k < A™%*(r;),
or
(3) g is decreasing value of resource r; by k, and k > Ami”(rj)

In other words, case C weakly satisfies goal g of agent a, if (i)
agent is in the same position in OCMAS as agent from the stored
case before the plan execution, (ii) agent is trying to increase a
resource value by k and case has increased value of this resource
by more than k, or (iii) agent is trying to decrease a resource value
by k and case has decreased the value by more than k. Partial
satisfiability does not ensure that found plan can be executed by
an agent since the agent does not necessarily have all the required
resources to perform the plan. Adding following restriction to case
satisfiability, we define:
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Definition 4.4. Case C = (s, P, A™%% A™inY strictly satisfies goal
g with n plan items p; <4 of agent a with ¢ resources r; <5, if
(1) it weakly satisfies goal g and
(2) every agent resource but the resource contained in goal
never passes the minimum value P N < E < rp

Z;:O N (ry) = riin,

This represents that a case C strictly satisfies goal g if (i) it weakly
satisfies goal g and (ii) agents resource values never reaches less
than allowed minimum value r™" when executing a plan from
the stored case. Passing minimum resource values represents that
agent has insufficient resources to perform this plan. Minimum
resource values are often set to zero (e.g. wheat™" = 0 specifies
that agent can never use more wheat than it currently owns). We
name such case a strict case.

The retrieval phase checks whether a case strictly satisfies goal
g by reconstructing the stored plan using agents current resources,
described in the next section.

4.2.2  Plan Reconstruction and Plan Pruning. Assume that the
retrieved case C contains a plan P with plan items p1, p2...pn. Apply-
ing the A<I<" functions to agents current resources, our system
can reconstruct how resources change during the plan execution.
It also detects, if agent goal is fulfilled after p;<p. If such p; is
found, the system creates a new case C* and removes all items
Pirk-n — i < k < n from the original plan. That is, from the defini-
tion of a stored case it is trivial to detect p; that satisfies agents goal
by taking agents current resources and increasingly apply resource
deltas A9<I<" until agents resources reach a goal value.

Step | Delta Water | Wheat | Goal?
Start | — 0 0 No
p1 water + 1 1 0 No
P2 water + 1 2 0 No
|p3 ‘ wheat + 1 ‘ 2 ‘ 1 ‘ Yes ‘

Table 2: Plan Reconstruction and Pruning

For example, consider a case from Table 1 and a goal of wheat >= 1
for agent owning no resources. The plan reconstruction process is
depicted in Table 2, where the system detected that goal is fulfilled
after p3. Therefore, the system can prune p4 and ps.

While pruning of case plans is often performed in the Reuse
phase, in specific cases agent needs to perform it also during the
case retrieval. These cases deal with the situations when there is
no strict case to satisfy agent goal g, but we can combine existing
cases to create a plan to reach the desired goal.

4.2.3  Plan Extension. When agent a plans for its goal g it will
first try to retrieve cases that strictly satisfy goal g. When no such
cases exist, it will retrieve those that weakly satisfy goal g and
order them by the amount of missing resources, detected by recon-
structing the plan from the current state of the agent. For example,
consider a following plan from a weak case for agent owning no
resources, having hunger = 80 and the goal hunger < 50:

(1) makeBread, sy — c3 — $¢, bread: +1, water: -2, wheat: -1

(2) eatBread, sp — c4 — sp, bread: -1, hunger: -50

The agent cannot perform this plan as both water (-2) and wheat
(-1) would reach negative values during the plan execution, totalling
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to three missing resources. The system can extend this plan and
search for other cases that would satisfy all missing resources (i.e.
goals water >= 2 and wheat >= 1). This means that before the
execution of a plan item (1), the system will try to retrieve a case
with a plan that starts in sy (current agent state), satisfies water: +2,
and ends in sg (initial state of step (1) in the original plan. Similarly,
we try to find a case that satisfies wheat: +1.

Definition 4.5. In order to satisfy a missing resource (partial goal
g*) from an original plan P, we define an extension of plan P — P
as insertion of a pruned plan Pj,, before the n-th plan item P. Plan
P}, can extend plan P only if the output state of the arc ¢ of the plan
item pp—1 € P is the same as the input state of the arc in the first
item of p; € P}, and that the input state of the arc ¢ in the plan item
pn+1 € P is the same as the output state of the arc in the last item
of pjass € Py,. We name plan P;, an extended plan.

In the definition above, we require that plan Pj, is pruned to
minimise the side-effects of execution of the inserted plan. By side-
effects, we mean the modification and utilisation of resources that
are needed to execute the original plan. Therefore, we assume the
plan extension to be:

(1) safe if it does not modify any resources consumed in the
original plan

(2) unsafe if it does modify resources consumed in the original
plan, but still allows execution of the extended plan

(3) invalid if it consumes enough resources to prohibit execution
of the extended plan

The possible drawbacks of this approach are that in specific
cases, the complexity of trying to reconstruct the plan from partial
plans is very high and the plan quality is low (agents perform
many unnecessary steps, e.g. collect many unnecessary resources).
Therefore, we propose several heuristics that limit these drawbacks:

e Width(m) — n specifies how many new items can system
insert into original plan of length m to strictly satisfy a goal.

e Depth(m) — n specifies how many times the plan of length
m can be extended to strictly satisfy a goal.

e Value(r) — nspecifies how many plan items can be inserted
in order to retrieve one unit of resource r.

Unfortunately, there are no constant values for these heuristics
as they are domain dependent, needing to be adjusted per each
system. In our case of Uruk 5000 B.C., we have set following val-
ues Width(m) = 10/m + 1 since no plan should contain more
than ten items. We have also specified several Value heuristics, e.g.
Value(wheat) = 2, Value(water) = 1. This tells the CBP sys-
tem that to recuperate one unit of wheat a maximum length of the
extension is two plan items. In case, when no stored plan exists to
satisfy the partial goal g*, CBP system performs a dynamic search
to find the plan from g*. If the search is successful, (i) it is pruned
and stored in the case base and (ii) inserted in the original plan.

Dynamic search is also performed when no similar case for a
current goal exists (e.g. empty case base, the goal requires new
resources, the goal starts in a new state or heuristic failure). In this
case, we dynamically search for the current goal and set up a new
case. Figure 9 shows the retrieval process as an activity diagram.

4.24 Plan ordering. In case, when more then one plan is avail-
able to fulfil an agent’s goal, it comes naturally to order plans by
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Figure 9: Retrieve cycle

Dynamic

a number of plan items. This would allow agents to finish their
plans in the fastest possible way. Dealing with resources this is
often not desirable. During plan execution for goal g, as a matter of
serendipity, agents can obtain valuable resources with low effort,
or satisfy the next planned goal. Therefore, we propose to order
plans by the total value they provide for current needs depending

2;‘:0 value(r;)
steps
modelled as a linear or quadratic function, for example, if an agent

owns no wheat, it may provide a higher value in contrast to owning
a lot of wheat, where additional wheat provides less value.

on number of performed plan steps, . Value is often

4.3 Reuse, Revise and Retain

The Reuse stage is responsible for adapting the retrieved case to the
current problem. In our case, we only prune the plan to avoid un-
necessary actions when achieving a goal. These actions relate to the
ones that happen after we have achieved our goal (see Section 4.2.2).

The Revise stage is responsible for verification of the adapted
case, usually by an expert. In our case, the adapted cases can be
verified automatically, by performing plan reconstruction described
in Section 4.2.2. In Section 4.4 we will introduce more verifications
that relate to use of CBP planning for virtual environments.

The Retain stage decides whether or not to store the new case
into the case base. In our case, we store only new, unique solutions
that strictly satisfy the current goal. The retain stage in our case
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also has an exploratory role, which generates as many new cases as
there exist feasible paths from any state of OCMAS system to the
start state of plan P. By feasible path we mean a sequence of actions
that can be performed from state s, to state s,4m, considering the
agent has no resources. Using feasible paths, we assure that the
agent has enough resources to reach the start state of plan P and
that it does not lose vital resources to execute plan P along the way.
This further reduces the necessity for dynamic search in similar
cases. With the current definition of CBP cycle we account for the
creation of plans based on agents knowledge encoded in OCMAS
system. In 3D virtual environments, we need to account for the
possibilities given by the environment in which agent performs,
often dynamically changing with limited resources.

4.4 CBP cycle for virtual environments

In 3D virtual environments, agents perform their actions by interact-
ing with some objects or other agents. Therefore, each interactive
object in the 3D environment needs to be annotated with names
of actions it provides, along with other meta-data (e.g. animation
that executes during interaction). When such annotation exists, we
propose further restrictions and orderings on case retrieval:

(1) Restriction: Only retrieve and extend cases containing ac-
tions that can be executed in the current state of the environ-
ment. That is, do not allow the system to select cases that
cannot be performed in the environment. For example, if all
wheat has been harvested, bakers can no longer bake bread
and have to find other means of obtaining food.

(2) Ordering: Order cases by the distance that needs to be trav-
elled to complete the plan, assuming that agents prefer faster
plan execution. This can be further optimised for the delay
discounting (a behavioural measure of impulsivity, often used
to quantify human tendency to choose a smaller, faster re-
ward) according to the value that a given plan provides.

5 CASE STUDY AND EXPERIMENTS

To show the benefits of our approach, we apply it to the simulation
of Ancient Mesopotamia (Uruk) that was introduced in Section 2.

For purposes of our evaluation, we assumed our existing simu-
lation with roles: Baker, Fisher, Shepherd and Potter. Bakers bake
bread made from wheat (processed to flour) and water in clay ovens.
Fishers catches fish with a partner, where one is rowing a boat and
another fishes using a spear made of reed. Fish is stored in pots.
Shepherds walk sheep and milk them. Potters make pots from clay
mixed with water, which they exchange for food. All Uruk citizens
need to eat (bread, milk or fish), drink (water or milk from a pot),
rest and sleep in their beds. They can socialise by talking to each
other, they take baths in the river and clean their houses and work
environments. The necessary resources to perform these actions
are limited and scattered in the environment.

To generate agent goals, we have used a Sim-based approach [5],
which allows automatic generation of goals according to various
needs, i.e. physiological, social, fun, hygiene, tidiness. To satisfy
these goals agents generate plans which are executed in the virtual
environment by interaction with virtual objects and other agents.
Such objects are annotated with actions they provide, the location
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at which the interaction starts and animations that are played by
an agent during the interaction with the object.

Organisational structure of agent knowledge is encoded in a
Virtual Institution [5], structured as hierarchical task network with
compound activities. We have isolated 26 individual actions, organ-
ised into 5 compound actions on two levels. The top level contains
four individual actions and five compound actions. The longest
sequence of actions to satisfy a goal (hunger) is 7, involving the
making of a spear from reed, fishing, cooking fish and eating it. The
maximum number of considered actions after HTN optimisation on
the top level is 9, giving worst case scenario of approx. 400.000.000
possibilities for plan construction.

In the second step of our evaluation, we ran the simulation
using dynamic planning of actions, recorded the generated tests
and measured performance. As expected, dynamic planning caused
many FPS spikes and allowed us to execute only around 25 agents
at a satisfying frame rate. Increased number of agents decreased
system performance due to several concurrent planning processes.
The generated plans formed our "ground truth" of believable plans
for given contexts since they were evaluated in [4] and [6].

In the third step of our evaluation, we have employed CBP al-
gorithm for plan generation, measured system performance and
compared the generated plans to "ground truth", assuring the be-
lievability of agent performance.

Using Case-Based Planning, the frame rate has stabilised, allow-
ing smoother experience in VR, using HTC Vive®. We were also
able to increase the number of running agents, but due to graphics
processing constraints of Alienware 17 PC, we were only able to
execute around 50 agents at an acceptable frame-rate for VR. This
limitation is due to the use of high-poly avatars and is currently in
the process of optimisation.

80 UU —

60

404

20+

Agents 100 200 300 400 500 600

Figure 10: System frame-rate with CBP

Concerned by the graphical constraints of the VR system, we
have decided to conduct further experiments in our high-performance
simulation environment Vittoria. Figure 11 depicts the frame-rate
of the simulation depending on the number of executed agents.
Visibly, the frame-rate is more stable than in the dynamic-planning
case in Figure 7 and starts to spike at around 300 agents, coming to
a halt with 400 executed agents.

Upon investigation of this issue, we have discovered, that the
performance drop was accounted to the current implementation
of Virtual Institution execution environment, which is not able
to execute a large number of agents. The reason was the garbage
collection process performed by the .NET framework, removing
resources used during agent communication and evaluation of

Chttps://www.vive.com/
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agent actions. We are currently working on a high-performance
implementation of Virtual Institutions execution environment, and
it is part of our future works. Another factor that affected the
"lower" number of executed agents is that we simulated a fast-
forward mode, running one day in 60 seconds. As a result, agents
were planning more frequently than in the "real” execution, not
giving the .NET framework enough time to clean up resources.

@fians
"~ Generated Plans
— Cached Plans

1500+

1000+

500+

Time 10 20 30 40 50 60 70 80

Figure 11: Plan reuse with CBP

We have also tested the capabilities of our CBP system in reusing
and adapting plans. We have started the simulation with no stored
plans in the case base and observed the result. Figure 11 depicts the
CBP performance, where with time, most of the plans are reused by
the CBP process. Left axis represents the number of generated plans;
the bottom axis represents execution time. The slight increase in
dynamic plans over time is accounted to the dynamic nature of our
virtual environment where agents often need to come up with new
ways of satisfying their goals, due to missing resources.

Concerning the quality of plans, we have performed experiments
measuring their average length and the average number of obtained
resources. Using plans from strict cases, we were getting almost
the same results as when using dynamic planning. Allowing plan
merging we were initially obtaining some large results (20 items+),
yet, most of the plans were acceptable, i.e. no significant number of
unnecessary actions was performed. Using plan extension heuris-
tics, we were able to cut down the plan size of all plans to acceptable
size, with agents rarely performing some additional actions.

As a result, our CBP approach allows agents to dynamically cre-
ate believable plans from the pre-generated database of plans with
limited impact on system performance. Using Virtual Institutions,
it reduces the necessity to program individual agents and allows
to define behaviour on group (society) level using declarative ap-
proach. Thus we can simulate agent performance in Vittoria before
deploying it to Unity 3D and simulation designers can focus on
delivering believable art, automating most of the technical issues.

Planning Plan Length | Resources
Dynamic planning 6.45 43
Strict cases 6.48 4.3
Plan merging (no heuristics) | 6.92 4.9
Plan merging (heuristics) 6.61 4.5

Table 3: Average plan length and obtained resources

6 CONCLUSION

We have showed how Al planning can be successfully applied for
automating the process of populating historical and cultural Virtual

T. Trescak and A. Bogdanovych

Reality simulations with large numbers of virtual agents capable
of complex action. One of the key techniques that helped us to
achieve real-time performance was the use of case-based planning.
Instead of generating a new plan every time an agent must achieve
a particular goal, our approach is to first try to modify and combine
existing (previously generated) plans. Only if this fails, meaning
that no matching plan can be found, then agents try to achieve
their goals by searching for a new plan. Introducing case-base
planning allowed us to comfortably simulate over 300 agents and
maintain a stable and reasonable frame-rate, while without case-
based planning we were only able to simulate close to 40 agents.
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