Transform Methods for Information Retrieval

Laurence A. F. Park

lapark@ee.mu.oz.au

ARC Special Research Centre for Ultra-Broadband Information Networks

THE UNIVERSITY OF MELBOURNE

Outline

- Why do we need text retrieval?
- Our method : Spectral Document Ranking (SDR)
- Improving Efficiency of SDR
- Multiresolution Analysis with SDR
- Comparisons

Outline

Why do we need text retrieval?

- WWW problem
- Vector Space Methods
- Proximity Methods
- Experimental Data
- Our method : Spectral Document Ranking (SDR)
- Improving Efficiency of SDR
- Multiresolution Analysis with SDR
- Comparisons

Text retrieval on the Web

Issue of Relevance

What makes a document relevant to a set of query terms?

- The occurrence of the terms in the document?
- The proximity of the terms?

Issue of Relevance

What makes a document relevant to a set of query terms?

- The occurrence of the terms in the document?
- The proximity of the terms?

Relevance is subjective, therefore we must:

- Give documents a score of relevance
- Present the ordered list to the searcher

Important Properties

Query Speed

Precision of results

Index Size

Existing method: Vector Space Method

1

	term 1	term 2	•••	term m
document 1	0	2	•••	0
document 2	1	1	•••	0
÷	÷	÷	•••	÷
document n	0	1	•••	3
query	0	1	•••	1

- Document Score = query vector document vector
- Fast and compact
- Ignores query term proximity within documents

Existing method: Proximity Method

Eg. Smallest Substring:

Happy¹ birthday² to³ (you⁴, happy⁵ birthday⁶) to⁷ (you⁸, happy⁹ birthday¹⁰) Mr.¹¹ President¹², (happy¹³ birthday¹⁴ to¹⁵ you¹⁶)

Query: "happy you birthday" = $\{(4,6), (8,10), (13,16)\}$

Document score = function(query term position or proximity)

- Higher quality results
- Slow, more storage needed

Experimental Data

TREC (Text REtrieval Conference) at NIST

- Text articles from:
 - Associated Press 1988 (79,919 documents)
 - Wall Street Journal 1990 (74,520 documents)
 - Computer Select (56,920 documents)
 - Federal Register 1988 (19,860 documents)
- Queries from:
 - TREC-1 Conference (50 queries)
 - TREC-2 Conference (50 queries)
 - TREC-3 Conference (50 queries)

Selected titles to simulate typical Web query

Outline

Why do we need text retrieval?

- Our method : Spectral Document Ranking (SDR)
 - Term signals
 - Fourier Domain Scoring
- Improving Efficiency of SDR
- Multiresolution Analysis with SDR
- Comparisons

Spectral Document Ranking

- Vector space methods ignore spatial data
- Proximity methods are slow (many comparisons)
- Rank documents according to query term spectra:
 - Spectral components are orthogonal
 - Magnitude portrays query term occurrence
 - Phase shows component position
- Query term spectra calculated from query term signals

$$\tilde{f}_{d,huntsman} =$$

$$\tilde{f}_{d,huntsman} =$$

$$\tilde{f}_{d,huntsman} =$$
1

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\tilde{f}_{d,huntsman} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\tilde{f}_{d,rock} =$$

$$\tilde{f}_{d,rock} =$$

$$\tilde{f}_{d,rock} =$$
0

$$\tilde{f}_{d,rock} = \boxed{\begin{array}{c|c} \mathbf{0} & \mathbf{2} \end{array}}$$

$$\tilde{f}_{d,rock} =$$
020

$$\tilde{f}_{d,rock} = \begin{bmatrix} \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\tilde{f}_{d,rock} = \begin{bmatrix} \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$

$$\tilde{f}_{d,rock} = \begin{bmatrix} \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\tilde{f}_{d,rock} = \begin{bmatrix} \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Spectral Ranking Method

After the Fourier transform:

- Term signals are decomposed into sinusoids (frequency domain)
- If term signal spectra are similar, terms appear together
- Phase = position of signal
- Relevant document has high magnitude across query term signals and common phase across query term signals

Calculate Fourier Transform

To begin calculating the document score, we must obtain the Fourier transform of each term signal

Sum Magnitudes

- The magnitude represents the occurrence of the term for a frequency
- Add the magnitudes of each component across the query terms

$ ilde{H}_{d,huntsman}$	4	0	0	0	4	0	0	0
$ ilde{H}_{d,rock}$	3	1.4	2.2	2.7	1	2.7	2.2	1.4
$ ilde{H}_d$	7	1.4	2.2	2.7	5	2.7	2.2	1.4

Phase Precision

Treat phase as a unit vector and find the average for each component

Document Score

Multiply each magnitude by its phase precision

Sum components to obtain document score

$$\tilde{H}_d$$
71.42.22.752.72.21.4 $\tilde{\Phi}_d$ 10.80.80.200.20.80.8 $\tilde{s_d}$ 71.11.90.700.71.91.1

$$\Rightarrow S_d = \sum_{b=0}^{B-1} s_{d,b} = 14.6$$

This process is performed for each document in the set

The documents with the highest scores are considered the most relevant by the system.

Outline

- Why do we need text retrieval?
- Our method : Spectral Document Ranking (SDR)
- Improving Efficiency of SDR
 - Using the Cosine Transform
 - Component Cropping
 - Quantisation
 - Early Termination
- Multiresolution Analysis with SDR
- Comparisons

We have seen the Fourier transform method provides high precision results at a slow rate

To be competitive, we need a faster method

- We have seen the Fourier transform method provides high precision results at a slow rate
- To be competitive, we need a faster method
- Solution : Pre-compute and store the Transformed values

- We have seen the Fourier transform method provides high precision results at a slow rate
- To be competitive, we need a faster method
- Solution : Pre-compute and store the Transformed values
- Problem : DFT produces many complex floating point values
- $\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \stackrel{FFT}{\Rightarrow}$
- [1 -0.7 + 0.7i -1i 0.7 + 0.7i -1 0.7 0.7i 1i -0.7 0.7i]

Index size will increase by magnitude of 100

- We have seen the Fourier transform method provides high precision results at a slow rate
- To be competitive, we need a faster method
- Solution : Pre-compute and store the Transformed values
- Problem : DFT produces many complex floating point values
- $\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \stackrel{FFT}{\Rightarrow}$
- [1 -0.7 + 0.7i -1i 0.7 + 0.7i -1 0.7 0.7i 1i -0.7 0.7i]
 - Index size will increase by magnitude of 100
 - Solution : Use the compression qualities of the Discrete Cosine Transform

Cosine Transform

Advantages:

- Decomposes signals into sinusoids
- Karhunen-Loève Transform ⇒ Principle Component Analysis
- Cosine Transform = KLT for first order stationary Markov process
- Reduction of dimension (cropping) ⇒ Less data
- No imaginary components
- Disadvantages:
 - Slight reduction in precision due to cropping

Compression : Component Cropping

Cosine transform approximates KLT

Cropping higher components removes little information

 $DCT(f_{d,1}) = \begin{bmatrix} 1.1 & 0 & 0.6 & 0.9 & 1.3 & 2.1 & 0 & 0.4 \end{bmatrix}$ $DCT(f_{d,2}) = \begin{bmatrix} 0.8 & 0.3 & 0.7 & 0.7 & 1.1 & 1.0 & 1.5 & 0.9 \end{bmatrix}$ $DCT(f_{d,3}) = \begin{bmatrix} 1.4 & 2.1 & 0.8 & 0.9 & 1.1 & 2.0 & 1.8 & 0.4 \end{bmatrix}$ $\vdots \qquad \begin{bmatrix} \vdots & \vdots \\ DCT(f_{d,m}) = \begin{bmatrix} 2.5 & 1.9 & 1.3 & 1.6 & 0.1 & 1.1 & 1.2 & 2.1 \end{bmatrix}$

Compression : Component Cropping

Cosine transform approximates KLT

Cropping higher components removes little information

Compression : Quantisation

- Types: Left geometric, Right geometric, Uniform
- Magnitude ⇒ Left geometric
- Phase \Rightarrow Uniform

Left Geometric Distribution

Uniform Distribution

Speed up : Early Termination

- Obtain enough (not all) information to rank documents
- Sort index by term, value
- Rank top N documents
- Stopping criteria
 - Quit
 - Continue
- Accumulator (buffer) of size d used to gather results of top d documents

Skip Example

Early Termination : Sort Index

Early Termination : Sort Index

- term 1 $\langle d_1, 0 \rangle$ $\langle d_2, 2 \rangle$ $\langle d_3, 0 \rangle$ $\langle d_4, 1 \rangle$ $\langle d_5, 1 \rangle$ term 2 $\langle d_1, 1 \rangle$ $\langle d_2, 0 \rangle$ $\langle d_3, 1 \rangle$ $\langle d_4, 2 \rangle$ $\langle d_5, 0 \rangle$ term 3 $\langle d_1, 2 \rangle$ $\langle d_2, 1 \rangle$ $\langle d_3, 0 \rangle$ $\langle d_4, 0 \rangle$ $\langle d_5, 2 \rangle$
- term 4 $\langle d_1, 1 \rangle$ $\langle d_2, 1 \rangle$ $\langle d_3, 3 \rangle$ $\langle d_4, 0 \rangle$ $\langle d_5, 0 \rangle$

Early Termination : Sort Index

term 1 $\langle d_1, 0 \rangle$ $\langle d_2, 2 \rangle$ $\langle d_3, 0 \rangle$ $\langle d_4, 1 \rangle$ $\langle d_5, 1 \rangle$ term 2 $\langle d_1, 1 \rangle$ $\langle d_2, 0 \rangle$ $\langle d_3, 1 \rangle$ $\langle d_4, 2 \rangle$ $\langle d_5, 0 \rangle$ term 3 $\langle d_1, 2 \rangle$ $\langle d_2, 1 \rangle$ $\langle d_3, 0 \rangle$ $\langle d_4, 0 \rangle$ $\langle d_5, 2 \rangle$ term 4 $\langle d_1, 1 \rangle$ $\langle d_2, 1 \rangle$ $\langle d_3, 3 \rangle$ $\langle d_4, 0 \rangle$ $\langle d_5, 0 \rangle$ \downarrow term 1 $\langle d_2, 2 \rangle \quad \langle d_4, 1 \rangle \quad \langle d_5, 1 \rangle \quad \langle d_1, 0 \rangle \quad \langle d_3, 0 \rangle$ term 2 $\langle d_4, 2 \rangle \quad \langle d_1, 1 \rangle \quad \langle d_3, 1 \rangle \quad \langle d_2, 0 \rangle \quad \langle d_5, 0 \rangle$ term 3 $\langle d_1, 2 \rangle$ $\langle d_5, 2 \rangle$ $\langle d_2, 1 \rangle$ $\langle d_3, 0 \rangle$ $\langle d_4, 0 \rangle$ term 4 $\langle d_3, 3 \rangle$ $\langle d_1, 1 \rangle$ $\langle d_2, 1 \rangle$ $\langle d_4, 0 \rangle$ $\langle d_5, 0 \rangle$

Query : spider car, Accumulator size = 3

Doc	Score
-	0
-	0
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3, 0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4,0 angle$
boat	$\langle d_3,3 angle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
-	0
-	0
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3, 0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5, 0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4,0 angle$
boat	$\langle d_3, 3 \rangle$	$\langle d_1,1 angle$	$\langle d_2, 1 \rangle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
-	0
-	0
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5, 0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
boat	$\langle d_3, 3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
-	0
-	0
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3, 0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4,0 angle$
boat	$\langle d_3, 3 \rangle$	$\langle d_1,1 angle$	$\langle d_2, 1 \rangle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
d_2	2
-	0
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
boat	$\langle d_3,3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
d_2	2
-	0
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
boat	$\langle d_3,3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
d_2	2
d_1	2
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5, 0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
boat	$\langle d_3,3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score
d_2	2
d_1	2
-	0

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5, 0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
boat	$\langle d_3,3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score		spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3, 0 angle$
d_2	2		house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
d_1	2	~	car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
d_5	2		boat	$\langle d_3,3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score	S	pider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
d_2	2	۲ ب	nouse	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
d_1	2		car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4,0 angle$
d_5	2		boat	$\langle d_3, 3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$
				\Downarrow				
	Rank Document							
				1	d_2			
				2	d_1			
				3	d_5			

Query : spider car, Accumulator size = 3

Doc	Score	
d_2	2	
d_1	2	
d_5	2	

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4, 0 angle$
boat	$\langle d_3,3 \rangle$	$\langle d_1,1 angle$	$\langle d_2,1 angle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score	
d_2	2	
d_1	2	~
d_5	2	

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3,0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4,0 angle$
boat	$\langle d_3, 3 \rangle$	$\langle d_1,1 angle$	$\langle d_2, 1 \rangle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score	
d_2	2	
d_1	2	~
d_5	3	

spider	$\langle d_2,2 angle$	$\langle d_4,1 angle$	$\langle d_5,1 angle$	$\langle d_1,0 angle$	$\langle d_3, 0 angle$
house	$\langle d_4,2 angle$	$\langle d_1,1 angle$	$\langle d_3,1 angle$	$\langle d_2,0 angle$	$\langle d_5,0 angle$
car	$\langle d_1,2 angle$	$\langle d_5,2 angle$	$\langle d_2,1 angle$	$\langle d_3,0 angle$	$\langle d_4,0 angle$
boat	$\langle d_3, 3 \rangle$	$\langle d_1,1 angle$	$\langle d_2, 1 \rangle$	$\langle d_4,0 angle$	$\langle d_5,0 angle$

Query : spider car, Accumulator size = 3

Doc	Score	
d_2	3	
d_1	2	
d_5	3	

spider $\langle d_2, 2 \rangle \quad \langle d_4, 1 \rangle \quad \langle d_5, 1 \rangle \quad \langle d_1, 0 \rangle \quad \langle d_3, 0 \rangle$ house $\langle d_4, 2 \rangle \quad \langle d_1, 1 \rangle \quad \langle d_3, 1 \rangle \quad \langle d_2, 0 \rangle \quad \langle d_5, 0 \rangle$ car $\langle d_1, 2 \rangle \quad \langle d_5, 2 \rangle \quad \langle d_2, 1 \rangle \quad \langle d_3, 0 \rangle \quad \langle d_4, 0 \rangle$ boat $\langle d_3, 3 \rangle \quad \langle d_1, 1 \rangle \quad \langle d_2, 1 \rangle \quad \langle d_4, 0 \rangle \quad \langle d_5, 0 \rangle$ \downarrow Rank Document d_2 2 d_5 3 d_1

Spectral Early Termination

- Sort data by term, bin, magnitude
- Must combine magnitude and phase across terms before combining
- Need Magnitude and phase accumulators for each bin.

Skip Example

term 1	d_1	[0.3	-2.1	0.4	-1.1]
term 1	d_2	[0.7	0.4	0	-1.5]
term 1	d_3	[1.2	2.1	-0.3	0.5]
term 1	d_4	[0]	0	0	0]
term 2	d_1	[1.9	-1.1	0.6	1.2]
term 2	d_2	[0]	0	0	0]
term 2	d_3	[0.9	1.7	-1.1	-1.4]
term 2	d_4	[1.3	0.7	-0.8	1.1]

- term 1 $\langle d_1, 1, 0.3 \rangle$ $\langle d_1, 2, -2.1 \rangle$ $\langle d_1, 3, 0.4 \rangle$ $\langle d_1, 4, -1.1 \rangle$ term 1 $\langle d_2, 1, 0.7 \rangle$ $\langle d_2, 2, 0.4 \rangle$ $\langle d_2, 3, 0 \rangle$ $\langle d_2, 4, -1.5 \rangle$
- term 1 $\langle d_3, 1, 1.2 \rangle$ $\langle d_3, 2, 2.1 \rangle$ $\langle d_3, 3, -0.3 \rangle$ $\langle d_3, 4, 0.5 \rangle$
- term 1 $\langle d_4, 1, 0 \rangle$ $\langle d_4, 2, 0 \rangle$ $\langle d_4, 3, 0 \rangle$ $\langle d_4, 4, 0 \rangle$
- term 2
 $\langle d_1, 1, 1.9 \rangle$ $\langle d_1, 2, -1.1 \rangle$ $\langle d_1, 3, 0.6 \rangle$ $\langle d_1, 4, 1.2 \rangle$

 term 2
 $\langle d_2, 1, 0 \rangle$ $\langle d_2, 2, 0 \rangle$ $\langle d_2, 3, 0 \rangle$ $\langle d_2, 4, 0 \rangle$
- term 2 $\langle d_3, 1, 0.9 \rangle$ $\langle d_3, 2, 1.7 \rangle$ $\langle d_3, 3, -1.1 \rangle$ $\langle d_3, 4, -1.4 \rangle$ term 2 $\langle d_4, 1, 1.3 \rangle$ $\langle d_4, 2, 0.7 \rangle$ $\langle d_4, 3, -0.8 \rangle$ $\langle d_4, 4, 1.1 \rangle$

- term 1 $\langle d_1, 1, 0.3 \rangle$ $\langle d_1, 2, -2.1 \rangle$ $\langle d_1, 3, 0.4 \rangle$ $\langle d_1, 4, -1.1 \rangle$ term 1 $\langle d_2, 1, 0.7 \rangle$ $\langle d_2, 2, 0.4 \rangle$ $\langle d_2, 3, 0 \rangle$ $\langle d_2, 4, -1.5 \rangle$
- term 1 $\langle d_3, 1, 1.2 \rangle$ $\langle d_3, 2, 2.1 \rangle$ $\langle d_3, 3, -0.3 \rangle$ $\langle d_3, 4, 0.5 \rangle$ term 1 $\langle d_4, 1, 0 \rangle$ $\langle d_4, 2, 0 \rangle$ $\langle d_4, 3, 0 \rangle$ $\langle d_4, 4, 0 \rangle$
- term 2 $\langle d_1, 1, 1.9 \rangle$ $\langle d_1, 2, -1.1 \rangle$ $\langle d_1, 3, 0.6 \rangle$ $\langle d_1, 4, 1.2 \rangle$ term 2 $\langle d_2, 1, 0 \rangle$ $\langle d_2, 2, 0 \rangle$ $\langle d_2, 3, 0 \rangle$ $\langle d_2, 4, 0 \rangle$
- term 2 $\langle d_3, 1, 0.9 \rangle$ $\langle d_3, 2, 1.7 \rangle$ $\langle d_3, 3, -1.1 \rangle$ $\langle d_3, 4, -1.4 \rangle$ term 2 $\langle d_4, 1, 1.3 \rangle$ $\langle d_4, 2, 0.7 \rangle$ $\langle d_4, 3, -0.8 \rangle$ $\langle d_4, 4, 1.1 \rangle$

term 1 $\langle d_3, 1, 1.2 \rangle$ $\langle d_2, 1, 0.7 \rangle$ $\langle d_1, 1, 0.3 \rangle$ $\langle d_1, 2, -2.1 \rangle$ $\langle d_3, 2, 2.1 \rangle$ $\langle d_2, 2, 0.4 \rangle$ $\langle d_1, 3, 0.4 \rangle$ $\langle d_3, 3, -0.3 \rangle$ $\langle d_2, 4, -1.5 \rangle$ $\langle d_1, 4, -1.1 \rangle$ $\langle d_3, 4, 0.5 \rangle$

term 2 $\langle d_1, 1, 1.9 \rangle$ $\langle d_4, 1, 1.3 \rangle$ $\langle d_3, 1, 0.9 \rangle$ $\langle d_3, 2, 1.7 \rangle$ $\langle d_1, 2, -1.1 \rangle$ $\langle d_4, 2, 0.7 \rangle$ $\langle d_3, 3, -1.1 \rangle$ $\langle d_4, 3, -0.8 \rangle$ $\langle d_1, 3, 0.6 \rangle$ $\langle d_3, 4, -1.4 \rangle$ $\langle d_1, 4, 1.2 \rangle$ $\langle d_4, 4, 1.1 \rangle$

Query : spider car, Accumulator size = 3, 2 bins

Doc	Magr	Doc	Pha	ase	
	Bin 1	Bin 2		Bin 1	Bin 2
-	0	0	-	0	0
-	0	0	-	0	0
-	0	0	-	0	0

↑

spider $\langle d_3, 1, 1.2 \rangle$ $\langle d_2, 1, 0.7 \rangle$ $\langle d_1, 1, 0.3 \rangle$ $\langle d_1, 2, -2.1 \rangle$ $\langle d_3, 2, 2.1 \rangle$ $\langle d_2, 2, 0.4 \rangle$ $\langle d_1, 3, 0.4 \rangle$ $\langle d_3, 3, -0.3 \rangle$ car $\langle d_1, 1, 1.9 \rangle$ $\langle d_4, 1, 1.3 \rangle$ $\langle d_3, 1, 0.9 \rangle$ $\langle d_3, 2, 1.7 \rangle$ $\langle d_1, 2, -1.1 \rangle$ $\langle d_4, 2, 0.7 \rangle$ $\langle d_3, 3, -1.1 \rangle$ $\langle d_4, 3, -0.8 \rangle$

	Doc	Magr	itude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	-	0	0		-	0	0	
	-	0	0		-	0	0	
	-	0	0		-	0	0	
				↑				
spider	$\langle d_3$	$,1,1.2\rangle$	$\langle d_2, 1$,0.	$7\rangle$ $\langle c$	$d_1, 1, 0.3$	$\rangle \langle d_1,$	2,-2.1 angle
	$\langle d_3$,2,2.1 angle	$\langle d_2, 2$	2, 0.4	$4\rangle \langle c$	$l_1, 3, 0.4$	$\rangle \langle d_3,$	$3,-0.3\rangle$
car	$\langle d_1$,1,1.9 angle	$\langle d_4, 1$, 1.3	$3\rangle$ $\langle c$	$l_3, 1, 0.9$	$\rangle \langle d_3$,2,1.7 angle
	$\langle d_1,$	2, -1.1	$\langle d_4, 2$	2, 0.7	$7\rangle \langle d_3\rangle$	3, 3, -1.2	$ \rangle \langle d_4,$	3,-0.8 angle

	Doc	Magr	itude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	-	0	0		-	0	0	
	-	0	0		-	0	0	
				介				
spide	$r \langle d_3 \rangle$	$_{3},1,1.2\rangle$	$\langle d_2, 1$.,0.7	$\langle d \rangle \langle d \rangle$	(1, 1, 0.3)	$\langle d_1, d_1 \rangle$	2,-2.1 angle
	$\langle d_{\beta}$	$_3,2,2.1\rangle$	$\langle d_2, 2$	2, 0.4	$\downarrow\rangle$ $\langle d$	(1, 3, 0.4)	$\langle d_3,$	3,-0.3 angle
car	$\langle d_1$	$,1,1.9\rangle$	$\langle d_4, 1$.,1.3	$\beta\rangle$ $\langle d$	(2,1,0.9)	$\langle d_3$,2,1.7 angle
	$\langle d_1,$, 2, -1.1	$\langle d_4, 2 \rangle$	2, 0.7	$\langle d_3 \rangle \langle d_3 \rangle$, 3, -1.1	$\langle d_4,$	3,-0.8 angle

	Doc	Magr	itude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	-	0	0		-	0	0	
	-	0	0		-	0	0	
				↑				
spide	$r \langle d_3 \rangle$	$_{3},1,1.2\rangle$	$\langle d_2, 1$	1, 0.7	$\langle d \rangle \langle d \rangle$	(1, 1, 0.3)	$\langle d_1, d_1 \rangle$	2,-2.1 angle
	$\langle d_{\hat{z}}$	$_3,2,2.1\rangle$	$\langle d_2, 2 \rangle$	2, 0.4	$\downarrow\rangle$ $\langle d$	$\langle l_1,3,0.4 \rangle$	$\langle d_3, d_3 \rangle$	3,-0.3 angle
car	$\langle d \rangle$	$,1,1.9\rangle$	$\langle d_4, 1$	1,1.3	$\langle d \rangle$	$\langle 2_{3}, 1, 0.9 \rangle$	$\langle d_3$,2,1.7 angle
	$\langle d_1,$, 2, -1.1	$\rangle \langle d_4, 2 \rangle$	2, 0.7	$\langle d_3 \rangle \langle d_3 \rangle$, 3, -1.1	$\langle d_4, d_4 \rangle$	3,-0.8 angle

	Doc	Magr	itude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	d_4	1.3	0		d_4	1	0	
	-	0	0		-	0	0	
				\uparrow				
spide	$r \langle d_3 \rangle$	$_{3},1,1.2\rangle$	$\langle d_2, 1$, 0.7	$\rangle \langle d_1$,1,0.3 angle	$\langle d_1, 2$	2,-2.1 angle
	$\langle d_{\beta}$	$_3,2,2.1\rangle$	$\langle d_2, 2$	2, 0.4	$\rangle \langle d_1$,3,0.4 angle	$\langle d_3, 3\rangle$	$\left. {\left. { - 0.3} \right angle } ight.$
car	$\langle d_1$	$,1,1.9\rangle$	$\langle d_4, 1$,1.3	$\rangle \langle d_3 \rangle$	$\left 3,1,0.9 \right\rangle$	$\langle d_3,$	2, 1.7 angle
	$\langle d_1,$, 2, -1.1	$\langle d_4, 2$	2, 0.7	$\rangle \langle d_3,$	3, -1.1	$\rangle \langle d_4, 3 \rangle$	$\left. 8,-0.8 ight angle$

	Doc	Magr	itude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	d_4	1.3	0		d_4	1	0	
	-	0	0		-	0	0	
				\uparrow				
spide	$r \langle d_3 \rangle$	$_{3},1,1.2\rangle$	$\langle d_2, 1$, 0.7	$\rangle \langle d_1$	$,1,0.3\rangle$	$\langle d_1, 2$	2, -2.1
	$\langle d_{\Xi}$	$_3,2,2.1\rangle$	$\langle d_2, 2$	2, 0.4	$\rangle \langle d_1$,3,0.4 angle	$\langle d_3, 3\rangle$	$\left 6, -0.3 \right\rangle$
car	$\langle d_1$	$,1,1.9\rangle$	$\langle d_4, 1$,1.3	$\rangle \langle d_3 \rangle$	$_{3},1,0.9\rangle$	$\langle d_3,$	2, 1.7 angle
	$\langle d_1,$, 2, -1.1	$\langle d_4, 2 \rangle$	(2, 0.7)	$\rangle \langle d_3,$	3, -1.1	$\rangle \langle d_4, 3 \rangle$	$\left. 8,-0.8 ight angle$

	Doc	Magr	nitude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	d_4	1.3	0		d_4	1	0	
	d_3	1.2	0		d_3	1	0	
				\uparrow				
spide	d_3	$_{3},1,1.2\rangle$	$\langle d_2, 1$	$\langle 0.7 angle$	$\langle d_1$,1,0.3 angle	$\langle d_1, 2 \rangle$	$\left -2.1 \right\rangle$
	$\langle d_{\hat{z}}$	$_3,2,2.1\rangle$	$\langle d_2, 2$	2,0.4 angle	$\langle d_1$,3,0.4 angle	$\langle d_3, 3 \rangle$	$\left -0.3 \right\rangle$
car	$\langle d_1$	$,1,1.9\rangle$	$\langle d_4, 1$	$, 1.3 \rangle$	$\langle d_3$,1,0.9 angle	$\langle d_3, 2 \rangle$	2,1.7 angle
	$\langle d_1,$, 2, -1.1	$\rangle \langle d_4, 2 \rangle$	2,0.7 angle	$\langle d_3,$	$3, -1.1 \rangle$	$\langle d_4, 3 \rangle$,-0.8 angle

	Doc	Magn	nitude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	d_4	1.3	0		d_4	1	0	
	d_3	1.2	0		d_3	1	0	
				\uparrow				
spide	d_3	$_{3}, 1, 1.2 \rangle$	$\langle d_2, 1$	$\left ,0.7 ight angle$	$\langle d_1$,1,0.3 angle	$\langle d_1, 2 \rangle$,-2.1 angle
	$\langle d_{\Xi}$	$_3,2,2.1\rangle$	$\langle d_2, 2$	2,0.4 angle	$\langle d_1$,3,0.4 angle	$\langle d_3, 3 \rangle$,-0.3 angle
car	$\langle d_1$	$,1,1.9\rangle$	$\langle d_4, 1$	$, 1.3 \rangle$	$\langle d_3$,1,0.9 angle	$\langle d_3, 2$	2, 1.7 angle
	$\langle d_1,$	(2, -1.1)	$\rangle \langle d_4, 2 \rangle$	2,0.7 angle	$\langle d_3, d_3 \rangle$	3,-1.1 angle	$\langle d_4, 3 \rangle$,-0.8 angle

	Doc	Magr	nitude		Doc	Pha	ase	
		Bin 1	Bin 2			Bin 1	Bin 2	
	d_1	1.9	0		d_1	1	0	
	d_4	1.3	0		d_4	1	0	
	d_3	1.2	0		d_3	1	0	
				↑				
spide	$\langle d_3 \rangle$	$_{3},1,1.2\rangle$	$\langle d_2, 1$,0.7 angle	$\langle d_1$,1,0.3 angle	$\langle d_1, 2 \rangle$	$,-2.1\rangle$
	$\langle d_3$	$_{3},2,2.1\rangle$	$\langle d_2, 2 \rangle$	2,0.4 angle	$\langle d_1$,3,0.4 angle	$\langle d_3, 3 \rangle$,-0.3 angle
car	$\langle d_1$	$,1,1.9\rangle$	$\langle d_4, 1$	$,1.3\rangle$	$\langle d_3$,1,0.9 angle	$\langle d_3, 2$	2, 1.7 angle
	$\langle d_1,$	$, 2, -1.1 \rangle$	$\rangle \langle d_4, 2 \rangle$	$2, 0.7 \rangle$	$\langle d_3, d_3 \rangle$	$3,-1.1\rangle$	$\langle d_4, 3 \rangle$,-0.8 angle

Query : spider car, Accumulator size = 3, 2 bins

Doc	Magr	nitude	Doc	Pha	ase
	Bin 1	Bin 2		Bin 1	Bin 2
d_1	2.2	3.2	d_1	2	-2
d_4	1.3	0.7	d_4	1	1
<i>d</i> ₃	2.1	3.8	<i>d</i> ₃	2	2

↑

spider $\langle d_3, 1, 1.2 \rangle$ $\langle d_2, 1, 0.7 \rangle$ $\langle d_1, 1, 0.3 \rangle$ $\langle d_1, 2, -2.1 \rangle$ $\langle d_3, 2, 2.1 \rangle$ $\langle d_2, 2, 0.4 \rangle$ $\langle d_1, 3, 0.4 \rangle$ $\langle d_3, 3, -0.3 \rangle$ car $\langle d_1, 1, 1.9 \rangle$ $\langle d_4, 1, 1.3 \rangle$ $\langle d_3, 1, 0.9 \rangle$ $\langle d_3, 2, 1.7 \rangle$ $\langle d_1, 2, -1.1 \rangle$ $\langle d_4, 2, 0.7 \rangle$ $\langle d_3, 3, -1.1 \rangle$ $\langle d_4, 3, -0.8 \rangle$

Outline

- Why do we need text retrieval?
- Our method : Spectral Document Ranking (SDR)
- Improving Efficiency of SDR
- Multiresolution Analysis with SDR
 - Document Resolution
 - Wavelet Decomposition
- Comparisons

Document Resolution

- Self similarity appears in nature everywhere
- Also appears in written language
- Mandelbrot : How long is the coast of Britain?
- Vector space methods = Big stick
- Fourier, Cosine, Gauss = Little stick
- Wavelet transform = Variable stick size

Document Resolution

- Self similarity appears in nature everywhere
- Also appears in written language
- Mandelbrot : How long is the coast of Britain?
- Vector space methods = Big stick
- Fourier, Cosine, Gauss = Little stick
- Wavelet transform = Variable stick size

Wavelet Decomposition

- Signal is decomposed into orthogonal wavelet set.
- Wavelet set is a scaled and shifted version of the wavelet function
- Desired properties:
 - Small size of support is essential to focus on single term bins and less non-zero components (better compression)
- Wavelets chosen:
 - Haar wavelet
 - Daubechies-4 wavelet

UBIN

UBIN

Document Score

- Use same method as in Cosine transform method (eg. treat sign of spectral component as phase)
- Experimented with combining score components using:
 - Sum score components
 - Sum squared score components (to conserve signal energy)

Wavelet Precision Results

Slightly better results than Fourier method

Less components to store for better results

- Fourier \approx 10 components (5 real + 5 imag)
- Haar \approx 4 components
- **Daubechies-4** \approx 6 components

No complex calculations required (no imaginary values)

	fds-5-4-1	haar-5-4-6	daub4-5-4-6
Prec.5	0.4867	0.5000	0.4960
Prec.10	0.4647	0.4633	0.4653
Prec.15	0.4440	0.4404	0.4391
Prec.20	0.4193	0.4213	0.4177

Outline

- Why do we need text retrieval?
- Our method : Spectral Document Ranking (SDR)
- Improving Efficiency of SDR
- Multiresolution Analysis with SDR
- Comparisons

Comparison of Results

	VSM	Fourier	Cosine	Gauss	Haar	Daub-4
Speed	Fast	Slow	Fast	Slow	Fast	Fast
Storage	Avg	Large	Avg	Large	Avg	Avg
Prec.5	0.4440	0.4907	0.4907	0.4733	0.5000	0.4960
Prec.10	0.4247	0.4647	0.4547	0.4560	0.4633	0.4653
Prec.15	0.4142	0.4440	0.4369	0.4267	0.4404	0.4391
Prec.20	0.3953	0.4193	0.4147	0.4073	0.4213	0.4177

Future Directions

Spectral document retrieval with feedback

- Eg. using SVM's
- Develop document signals constructed from non-orthogonal term signals
- Topic extraction from documents
 - Eg. creating abstracts
- Spectral Audio (Speech or Music) Retrieval
 - Speech is easier to record than transcribe
 - Compressed speech is stored in its spectral form
 - The human ear sends frequency components to the brain
 - Analysing the audio spectrum is natural

Conclusions

- We have establised a need for a more precise text search technique
- We introduced new spectral document ranking methods (Fourier, Cosine, Wavelet)
- The Fourier transform method gave one of the best results, but was slow
- The Cosine transform method provided results similar to the Fourier method, but with faster query time and compact index.
- The Wavelet transform methods gave results just as good as the Fourier method, with a fast query time and compact index.

