Mining Web Multi-resolution Community-based Popularity for Information Retrieval

Laurence A. F. Park Kotagiri Ramamohanarao

Department of Computer Science and Software Engineering University of Melbourne, Australia {lapark,rao}@csse.unimelb.edu.au

ACM Sixteenth Conference on Information and Knowledge Management

<ロ> (四) (四) (三) (三) (三)

Global popularity

PageRank is a measure of global Web popularity. It uses the consensus of the entire Web to compute page popularity. Therefore it is suited to general queries.

Problem

Specialised queries require consensus from specialised communities, therefore are not suited to PageRank.

- How do we compute a popularity list relative to a community?
- 2 How do we choose a list at query time?

(日)

Outline

- Multi-resolution popularity
- 2 Computing multi-resolution popularity
 - Pagerank's many solutions
 - Symmetric non-negative matrix factorisation
 - SNMF₁ PageRank equivalence
 - Computing community popularity using SNMF
- Using multi-resolution popularity
 - Query independent selection
 - Oracle selection
 - Rank based selection
 - Score based selection

Conclusion

Outline

Multi-resolution popularity

- Computing multi-resolution popularity
 - Pagerank's many solutions
 - Symmetric non-negative matrix factorisation
 - SNMF₁ PageRank equivalence
 - Computing community popularity using SNMF
- 3 Using multi-resolution popularity
 - Query independent selection
 - Oracle selection
 - Rank based selection
 - Score based selection
 - Conclusion

Lowest resolution (Global Popularity) Where can I buy a CD?

General queries can use the consensus of the whole community (e.g. K-mart).

A B F A B F

< 17 ×

Medium resolution Where can I buy a movie soundtrack CD?

Specific queries cannot be answered by the general public and require specific knowledge (e.g. HMV).

3 1 4 3

High resolution Where can I buy a 70's synthesiser movie soundtrack CD?

Specialised queries cannot be answered by specific groups and require specialised knowledge (e.g. Steve's super synthesiser music store).

3 1 4 3

Multi-resolution popularity lists for Web search

To use multi-resolution popularity lists, we must be able to:

- generate popularity lists for each community in a given resolution
- choose a popularity list once given a query

(日)

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF1, - PageRank equivalence Computing community popularity using SNMF

< 回 > < 回 > < 回 >

Outline

Multi-resolution popularity

- 2 Computing multi-resolution popularity
 - Pagerank's many solutions
 - Symmetric non-negative matrix factorisation
 - SNMF₁ PageRank equivalence
 - Computing community popularity using SNMF
- 3 Using multi-resolution popularity
 - Query independent selection
 - Oracle selection
 - Rank based selection
 - Score based selection
 - Conclusion

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF1, PageRank equivalence Computing community popularity using SNMF

PageRank

PageRank equation

PageRank is the first eigenvalue of the weighted link matrix L:

$$p_i = \lambda \sum_{j \in B_i} \frac{p_j}{\#(l_j)} \Leftrightarrow \tilde{p} = \lambda \tilde{p}L$$

Note that there are many solutions to the eigenvalue problem. Using PageRank, we choose the solution with the greatest eigenvalue.

(日)

Pagerank's many solutions Symmetric non-negative matrix factorisation SNMF₁ - PageRank equivalence Computing community popularity using SNMF

Problem with one popularity list Simple example

PageRank solution

$$\tilde{p}_1 = [\ 0.5\ 0.5\ 0.5\ 0.5\]$$

Using one popularity list produces equal popularity for all pages, when we can clearly see that it should not be equal.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pagerank's many solutions Symmetric non-negative matrix factorisation SNMF₁ - PageRank equivalence Computing community popularity using SNMF

Choosing many eigenvectors

- By examining the other solutions that are offered by the eigenvalue decomposition, we may find popularity lists relative to various communities within the Web.
- Unfortunately, the eigenvectors may contain complex and negative elements, which do not provide an obvious order.

Problem

How can we compute the eigenvalue decomposition, with the constraint that the elements must be positive and real?

Pagerank's many solutions Symmetric non-negative matrix factorisation SNMF₁ - PageRank equivalence Computing community popularity using SNMF

Non-negative matrix factorisation

Decompose the matrix A into matrices F and G:

 $A \approx FG^{T}$ $(d \times d) \approx (d \times n)(n \times d)$

where F and G contain non-negative elements and provide the best approximation of A.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Pagerank's many solutions Symmetric non-negative matrix factorisation SNMF₁ - PageRank equivalence Computing community popularity using SNMF

Non-negative matrix factorisation

Decompose the matrix A into matrices F and G:

 $A \approx FG^{T}$ $(d \times d) pprox (d \times n)(n \times d)$

where F and G contain non-negative elements and provide the best approximation of A.

Symmetric non-negative matrix factorisation

We add the constraint that $F = G \Rightarrow A \approx FF^T$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Pagerank's many solutions Symmetric non-negative matrix factorisation SNMF₁ - PageRank equivalence Computing community popularity using SNMF

The equivalence of PageRank and SNMF

If we observe the n = 1 symmetric non-negative matrix factorisation, we find that it is proportional to PageRank:

 $F = \text{SNMF}_1(A) \propto \text{PageRank}(A)$

This implies that $SNMF_1$ produces the same ranked list as PageRank

・ロト ・ 一日 ト ・ 日 ト

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Computing community popularity using SNMF Simple example revisited

Using multiple popularity lists, we are able to compute the popularity for each group.

(日)

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Computing community popularity using SNMF Simple example revisited

SNMF solution
SNMF ₁ = [0.5 0.5 0.5 0.5]
$SNMF_2 = \left\{ \begin{array}{l} [\ 0.67 \ 0.67 \ 0.00 \ 0.00 \] \\ [\ 0.05 \ 0.05 \ 0.68 \ 0.68 \] \end{array} \right.$

(日)

Using multiple popularity lists, we are able to compute the popularity for each group.

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Computing community popularity using SNMF Simple example revisited

SNMF solution	on
SNMF ₁ = [0	.5 0.5 0.5 0.5]
$SNMF_2 = \begin{cases} \\ \end{cases}$	[0.67 0.67 0.00 0.00] [0.05 0.05 0.68 0.68]
$SNMF_3 = \left\{ \begin{array}{c} \end{array} ight.$	[0.06 0.06 0.56 0.56] [0.01 0.01 0.39 0.39] [0.68 0.68 0.00 0.00]

(日)

Using multiple popularity lists, we are able to compute the popularity for each group.

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Multi-resolution popularity

In-links to documents i and j

Park, Ramamohanarao

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Multi-resolution popularity

In-links to documents i and j

SNMF₂ Split the popularity between those that link to i and j and those that don't.

link weight to document i Park, Ramamohanarao

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Multi-resolution popularity

In-links to documents i and j

SNMF₃ splits further into those that link to i and those that link to j.

link weight to document i Park, Ramamohanarao

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Multi-resolution popularity

In-links to documents i and j

SNMF₄ provides lists for those that link to *i*, those that link to *j*, those that link to both and those that link to neither.

link weight to document i Park, Ramamohanarao

Pagerank's many solutions Symmetric non-negative matrix factorisation SMF₁ - PageRank equivalence Computing community popularity using SNMF

Multi-resolution popularity

In-links to documents i and j

SNMF₅ introduces another list that may affect other documents.

link weight to document i Park, Ramamohanarao

Query independent selection Oracle selection Rank based selection Score based selection

Outline

- Multi-resolution popularity
- 2 Computing multi-resolution popularity
 - Pagerank's many solutions
 - Symmetric non-negative matrix factorisation
 - SNMF₁ PageRank equivalence
 - Computing community popularity using SNMF
- Using multi-resolution popularity
 - Query independent selection
 - Oracle selection
 - Rank based selection
 - Score based selection
 - Conclusion

• (1) • (1) • (1)

Query independent selection Oracle selection Rank based selection Score based selection

Experimental settings

- TREC GOV2 collection (25 million Web documents)
- 100 queries (topics 701-800)
- Computed 10 popularity lists (using resolutions 1,2,3,4).
- Typical Web searcher does not examine more than the top ten, therefore we used the measure Prec10.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Query independent selection Oracle selection Rank based selection Score based selection

Query Independent selection

Resolution	1	2	2		3	
Community	1	1	2	1	2	3
Prec10	0.36	0.38	0.38	0.39	0.38	0.38
PageRank ratio	1	1.06	1.04	1.06	1.03	1.05
Matched queries	22	26	28	20	23	19
Resolution		4	1			
Resolution Community	1	2	4 3	4		
Resolution Community Prec10	1	2 0.38	4 3 0.40	4 0.38		
Resolution Community Prec10 PageRank ratio	1 0.37 1.03	2 0.38 1.05	4 3 0.40 1.10	4 0.38 1.04		

Note that each community in each resolution provides a greater precision that the lowest resolution.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Query independent selection Oracle selection Rank based selection Score based selection

Oracle selection

The oracle method knows which community list to choose for each query. This shows the potential of using multi-resolution community based popularity lists.

Selection	Oracle
Prec10	0.544
PageRank ratio	1.497
Matched queries	100

< 17 ×

A B F A B F

Query independent selection Oracle selection Rank based selection Score based selection

Choosing a list

Problem

How do we choose the best list for a given query?

The best list should rank the initial query results higher and tighter than the other lists. Qualities for matching list:

- minimise mean(R_{i,j})
- maximise mean(1/R_{i,i})
- minimise sd(R_{i,j})
- minimise $sd(1/R_{i,j})$

- maximise mean($S_{i,j}$)
- minimise mean $(1/S_{i,j})$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- minimise sd(S_{i,j})
- minimise $sd(1/S_{i,j})$

Query independent selection Oracle selection Rank based selection Score based selection

Rank based selection

Candidates	Rank in list 1	Rank in list 2
<i>d</i> ₁	5	30
d_2	12	31
d_3	40	21
d_4	15	22
d_5	22	24
mean(R)	18.8	25.6
mean(1/ <i>R</i>)	0.08	0.04
sd(<i>R</i>)	13.3	4.6
sd(1/ <i>R</i>)	0.068	0.006

The candidate documents are top N scoring documents using term frequency matching.

(日)

Query independent selection Oracle selection Rank based selection Score based selection

Rank based selection result

Increase in precision using community ranks

Park, Ramamohanarao Multi-resolution Community-based Popularity

Query independent selection Oracle selection Rank based selection Score based selection

Score based selection

Candidates	Score in list 1	Score in list 2
<i>d</i> ₁	0.31	0.03
d_2	0.18	0.03
d_3	0.09	0.07
d_4	0.12	0.06
d_5	0.11	0.04
mean(S)	0.162	0.046
mean(1/ <i>S</i>)	7.46	24.52
sd(<i>S</i>)	0.089	0.018
sd(1/ <i>S</i>)	3.09	8.97

The candidate documents are top N scoring documents using term frequency matching.

(日)

Query independent selection Oracle selection Rank based selection Score based selection

Score based selection results

Increase in precision using community scores

The precision increases with the number of candidate documents.

э

Outline

- Multi-resolution popularity
- 2 Computing multi-resolution popularity
 - Pagerank's many solutions
 - Symmetric non-negative matrix factorisation
 - SNMF₁ PageRank equivalence
 - Computing community popularity using SNMF
- 3 Using multi-resolution popularity
 - Query independent selection
 - Oracle selection
 - Rank based selection
 - Score based selection

4 Conclusion

(3)

Conclusions

- The Web contains many communities, therefore a single popularity list is not suitable for all queries.
- Multi-resolution popularity lists can be computed using Symmetric non-negative matrix factorisation.
- The lowest community resolution is equivalent to PageRank.
- We have shown that a 50% increase over PageRank is possible using four resolutions.
- By comparing the ranks of the candidate documents within each popularity list, we were able to achieve an 11% increase over PageRank.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト