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Global popularity
PageRank is a measure of global Web popularity. It uses the
consensus of the entire Web to compute page popularity.
Therefore it is suited to general queries.

Problem
Specialised queries require consensus from specialised
communities, therefore are not suited to PageRank.

1 How do we compute a popularity list relative to a
community?

2 How do we choose a list at query time?
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Lowest resolution (Global Popularity)
Where can I buy a CD?
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General queries can
use the consensus of
the whole community
(e.g. K-mart).
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Medium resolution
Where can I buy a movie soundtrack CD?
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Specific queries cannot
be answered by the
general public and
require specific
knowledge (e.g. HMV).
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High resolution
Where can I buy a 70’s synthesiser movie soundtrack CD?
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Specialised queries
cannot be answered by
specific groups and
require specialised
knowledge (e.g.
Steve’s super
synthesiser music
store).
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Multi-resolution popularity lists for Web search

To use multi-resolution popularity lists, we must be able to:
1 generate popularity lists for each community in a given

resolution
2 choose a popularity list once given a query
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PageRank

PageRank equation

PageRank is the first eigenvalue of the weighted link matrix L:

pi = λ
∑
j∈Bi

pj

#(lj)
⇔ p̃ = λp̃L

Note that there are many solutions to the eigenvalue problem.
Using PageRank, we choose the solution with the greatest
eigenvalue.
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Problem with one popularity list
Simple example

a b

dc

PageRank solution

p̃1 = [ 0.5 0.5 0.5 0.5 ]

Using one popularity list
produces equal popularity for
all pages, when we can
clearly see that it should not
be equal.
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Choosing many eigenvectors

By examining the other solutions that are offered by the
eigenvalue decomposition, we may find popularity lists
relative to various communities within the Web.
Unfortunately, the eigenvectors may contain complex and
negative elements, which do not provide an obvious order.

Problem
How can we compute the eigenvalue decomposition, with the
constraint that the elements must be positive and real?
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Non-negative matrix factorisation

Decompose the matrix A into matrices F and G:

A ≈ FGT

(d × d) ≈ (d × n)(n × d)

where F and G contain non-negative elements and provide the
best approximation of A.

Symmetric non-negative matrix factorisation

We add the constraint that F = G ⇒ A ≈ FF T
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The equivalence of PageRank and SNMF

If we observe the n = 1 symmetric non-negative matrix
factorisation, we find that it is proportional to PageRank:

F = SNMF1(A) ∝ PageRank (A)

This implies that SNMF1 produces the same ranked list as
PageRank
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Computing community popularity using SNMF
Simple example revisited

a b

dc

SNMF solution

SNMF1 = [ 0.5 0.5 0.5 0.5 ]

SNMF2 =

{
[ 0.67 0.67 0.00 0.00 ]
[ 0.05 0.05 0.68 0.68 ]

SNMF3 =


[ 0.06 0.06 0.56 0.56 ]
[ 0.01 0.01 0.39 0.39 ]
[ 0.68 0.68 0.00 0.00 ]

Using multiple popularity lists, we are able to compute the
popularity for each group.
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SNMF1 (PageRank)
computes a score
based on the whole
data set.
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SNMF2 Split the
popularity between
those that link to i and j
and those that don’t.
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SNMF3 splits further
into those that link to i
and those that link to j .
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SNMF4 provides lists
for those that link to i ,
those that link to j ,
those that link to both
and those that link to
neither.
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SNMF5 introduces
another list that may
affect other documents.
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Experimental settings

TREC GOV2 collection (25 million Web documents)
100 queries (topics 701-800)
Computed 10 popularity lists (using resolutions 1,2,3,4).
Typical Web searcher does not examine more than the top
ten, therefore we used the measure Prec10.
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Query Independent selection

Resolution 1 2 3
Community 1 1 2 1 2 3
Prec10 0.36 0.38 0.38 0.39 0.38 0.38
PageRank ratio 1 1.06 1.04 1.06 1.03 1.05
Matched queries 22 26 28 20 23 19
Resolution 4
Community 1 2 3 4
Prec10 0.37 0.38 0.40 0.38
PageRank ratio 1.03 1.05 1.10 1.04
Matched queries 22 22 22 23

Note that each community in each resolution provides a greater
precision that the lowest resolution.
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Oracle selection

The oracle method knows which community list to choose for
each query. This shows the potential of using multi-resolution
community based popularity lists.

Selection Oracle
Prec10 0.544
PageRank ratio 1.497
Matched queries 100
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Choosing a list

Problem
How do we choose the best list for a given query?

The best list should rank the initial query results higher and
tighter than the other lists.
Qualities for matching list:

minimise mean(Ri,j )
maximise mean(1/Ri,j )
minimise sd(Ri,j )
minimise sd(1/Ri,j )

maximise mean(Si,j )
minimise mean(1/Si,j )
minimise sd(Si,j )
minimise sd(1/Si,j )
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Rank based selection

Candidates Rank in list 1 Rank in list 2
d1 5 30
d2 12 31
d3 40 21
d4 15 22
d5 22 24

mean(R) 18.8 25.6
mean(1/R) 0.08 0.04

sd(R) 13.3 4.6
sd(1/R) 0.068 0.006

The candidate documents are top N scoring documents using
term frequency matching.
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Score based selection

Candidates Score in list 1 Score in list 2
d1 0.31 0.03
d2 0.18 0.03
d3 0.09 0.07
d4 0.12 0.06
d5 0.11 0.04

mean(S) 0.162 0.046
mean(1/S) 7.46 24.52

sd(S) 0.089 0.018
sd(1/S) 3.09 8.97

The candidate documents are top N scoring documents using
term frequency matching.
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Conclusions

The Web contains many communities, therefore a single
popularity list is not suitable for all queries.
Multi-resolution popularity lists can be computed using
Symmetric non-negative matrix factorisation.
The lowest community resolution is equivalent to
PageRank.
We have shown that a 50% increase over PageRank is
possible using four resolutions.
By comparing the ranks of the candidate documents within
each popularity list, we were able to achieve an 11%
increase over PageRank.
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