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Abstract 

 
We propose a kernel-density based scheme that 

incorporates the object colors with their spatial 
relevance to track the object in a video sequence. The 
object is modeled by the color probability density 
function across a set of pixel regions on the object, 
partitioned in terms of the base shapes such as the 
concentric annuli or polygons at the object centre. The 
probability density of the object is derived by applying 
the kernel density estimator region-wise to the pixels 
within such partitioned areas. This proposed object 
representation enables the independent processing of 
the color features while at the same time making the 
implicit use of location information without having to 
involve additional model parameters. Weighting 
factors are also introduced to differentiate the 
significance of the relative physical locations when 
measuring the similarity of two probability density 
functions, and this facilitates the tracking of the more 
robust object features. The located object is then 
finalized for its boundary deformation by demanding a 
neighborhood similarity in colors at the object pixels 
near the boundary. Our experimental results showed 
this method is effective at tracking a non-rigid object 
on a moving background. 
 
1. Introduction 
 

Tracking an object throughout a video sequence 
often uses the similarity of certain features between the 
template and candidate target in the subsequent frame. 
Color features are the most common and important 
ones for this purpose. Many algorithms, such as 
template matching, histogram matching, region 
growing, and covariance preservation, to name a few, 
have been tried out by the researchers in the field to 
achieve a good tracking performance through the use 
of color features.  On the other hand, some have 
utilized the edge, boundary, shape model or point 
feature to locate the newer object position within the 
sequence. It is well appreciated that the object is the 

one that often needs to be modeled properly in an 
algorithm, especially when the video sequence has a 
non-stationary background. 

Though the template match method [1] uses both 
pixel color and location during the matching process, it 
is too strict to tie the pixel color to its precise location. 
This is because the color sampling of the pixels often 
results in slight difference in a neighborhood location. 
Moreover, the object appearance in a video would in 
general undergo some color changes and certain degree 
of shape deformation locally. Hence this type of 
template matching methods, even with the deformable 
template matching [2, 3], are not designed to handle 
such situations well. Other efforts like in [4, 5] tried to 
improve the robustness by representing the variability 
at each pixel in the template, and a learning stage has 
to be established there to estimate the variance of the 
brightness at each pixel over the training ensemble. 
Similarly, the view-based subspace model [6] can 
model variations in pose and lighting with the principal 
component analysis, but they also require training prior 
to tracking. In a different perspective, the histogram 
method [7] may offer some robustness under image 
distortions and occlusion using certain statistical 
properties; yet it does not utilize any potentially 
valuable spatial information of the pixels at all.  Hence 
the tracking could deviate from its course when there 
are other regions nearby with similar statistics to the 
candidate region. Other efforts in this regard include 
Hager and Belhumeur’s work [8] that explicitly 
modeled the geometry and illumination changes, which 
was later improved by Sclaroff and Isidoro [9] by using 
the robust M-estimators. In a further undertaking, 
Jepson et al [10] modeled the object appearance by a 
mixture of three components: a stable component that 
is learned with a long time-course, a two-frame 
transient component, and an outlier process. By 
identifying the stable properties of the appearance, they 
give these properties more significance in tracking.  A 
real-time EM-algorithm is then adopted to adapt the 
appearance model parameters over time. However this 
complex scheme has to assume implicitly that non-
target constraints should never be accepted as 
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consistent with the appearance model. Finally in a 
similar pursuit of robustness, a dynamic object 
representation [11] based on the characteristics of the 
local background has been recently proposed to use 
dominant feature elements to improve the tracking 
robustness. 

There are other approaches in the field, such as 
recently the use of kernel estimators. The authors of 
[12], for instance, modeled the object and the 
background by a statistic with a kernel density 
estimator that integrates with the joint domain-range 
representation, where the spatial address of the image 
lattice is the domain and the corresponding color space 
is the range. Though the joint domain-range feature 
space can explicitly model the spatial dependencies, it 
results in high dimensions for the kernel that would 
lead to huge computational complexity. For the 
reduction on the computational cost, the fast Gauss 
transform proposed by Elgammal [13] has been used 
for the kernel density estimator. The kernel based 
tracker is also proposed by Dorin and Peter [14], where 
the reference target is initially represented by a 
histogram. They then regularize the similarity function 
by masking the object with an isotropic kernel in the 
spatial domain, and the candidate target is finally 
located by maximizing the Bhattacharyya coefficient 
via a gradient optimization method. The mean shift 
technique [15], most similar to a given metric based on 
the Bhattacharyya coefficient, has also been employed 
to search the target candidate. For other varieties of 
approaches, Shai [16] integrated the support vector 
machine classifier into an optic-flow-based tracker, and 
Oliver et al [17] made use of the relevance vector 
machine, similar to support vector machine but capable 
of delivering a fully probabilistic output, in their real-
time tracking system. Due to the sparsity properties of 
the relevance vector machine, the tracker only needs to 
use a fraction of the CPU time.  

In this work, we propose a method that represents 
an object with a kernel based color density function 
constructed also in the context of physical locations of 
the object pixels. These spatial locations are derived 
from certain predefined basic shapes that help reflect 
the robustness of the object appearance. In the case of 
having a set of concentric annuli at the centre of the 
object, this concept of robustness refers to the better 
preservation of the appearance stability when it is 
closer to the object centre. The feature of a given 
region is represented by the color density function 
which is derived from the object pixels within that 
region. This way, the difference of the density 
functions across the selected regions will be able to 
reflect the more generic difference of the object 
appearance. Hence it also makes sense for the 
weighting factors to be introduced to signify the 

importance of the pixels at different physical locations 
when measuring the similarity of two probability 
density functions, without the explicit use of the 
location parameters. The positioning of the object in a 
newer frame is based on minimizing the distance 
between the density function for the object in the 
previous frame and that for the candidate region. Once 
the centre of the object in a newer frame is known and 
the object shape is predicted, or rather projected, there, 
the object shape verification process is then carried out 
to refine the final object shape in the frame. This 
method is designed for tracking a non-rigid object in a 
moving background, and also for providing a flexible 
framework to deal with different situations arising 
from different types of object appearance changes, and 
from the different cost requirements on the 
computation.  

This paper is organized as follows: Section 2 
models the object appearance with a kernel based 
probability density across the spatial regions 
partitioned by a set of concentric annuli. Section 3 
aims at locating the object in the current frame, using 
the proposed similarity metric to compare the 
probability density of the object with that of a 
candidate region. Section 4 then devises a procedure to 
verify whether the pixels near the projected object 
border remain indeed part of the object in the current 
frame. Some implementation issues and experimental 
results are shown in Section 5, and finally Section 6 is 
the conclusion. 
 
2. Object model 
 

An object’s appearance may change throughout a 
video sequence due to the change of object posture, 
illumination condition, and the camera viewing angles. 
The pixel colors of the object are obviously correlated 
to the corresponding pixel positions in general. Hence 
we propose to model the object by the color of the 
pixels as well as their spatial locations, sufficient 
enough to ensure a stable structure of the object 
appearance.  

 The appearance change could take place anywhere 
on the object. We thus propose to model the object 
presence with its regions of stable appearance, 
surrounded by those areas of volatile appearance, so 
that we can track the object by locating the more 
trustworthy appearance features. For this purpose, we 
need to make the following regularity assumptions 
about the object appearance: 1) A moving object 
retains certain stable appearance within a small period 
of time, e.g. within a section of a video sequence; 2) 
The appearance of the central region of the object is 
more likely to be much more stable than the regions 
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close to the object boundary; 3) The appearance in 
local  object regions does not change too drastically, in 
other words, the changes or transitions are somewhat 
smooth; 4) The geometric centre of object remains on 
the object,  similar to a convex shape. We assume that 
the scale of admissible appearance change is relatively 
uniform within each region, and in any case the object 
should be partitioned to fulfill this assumption as much 
as possible. Since the object may turn towards different 
directions as it moves across different frames, it would 
be beneficial to select the base shapes so that it remains 
invariant when the object rotates around the centre.  

For the representation of an object in our model, we 
define a set of annular regions Sk by the concentric 
circles at the object centre, as shown in figure 1 (a), 
where the object template is the area within the dashed 
contour. The Sk are sequenced in such a way that S1 is 
the disk containing the centre, and Sk+1 is the annulus 
next to Sk on the outside. The pixels on the object are 
then grouped for each annulus Sk, and the object is 
represented by these groups of pixels in the annular 
regions. More precisely, the object feature is 
characterized by a probability density of the object 
pixels falling into each annulus, which can be 
calculated by a kernel density estimator on the pixel 
color within the annulus, as shown in figure 1 (b). 

 
Let r0=0, and rk for k=1, .., m be the increasing radii 

for the annuli. An annulus Sk = { x: rk-1≤||x-c||<rk }, 
where x and c are both two dimensional vectors and c 
denotes the centre, is thus represented by the positions 
of all the pixels on the annulus, or disk when k=1. For 
each pixel position x, we denote by I(x) the colors at 
the pixel in the current frame, while by I*(x), the 
corresponding colors in the previous frame. If we 
further let Rk be the object region within Sk, i.e. Rk 
={x∈Sk: x is on the object}, then the object can be 
modeled by the density distribution of the object pixels 
in the annuli, and the nonparametric density function 
can be expressed as 
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where R=∪k Rk, D is a normalization factor, and ψ(·) is 
a kernel function such as the Gaussian, the triangular, 
or the bi-weight functions. Such a density distribution, 
as illustrated in figure 1(b), implicitly characterizes the 
object appearance by mean of the pixels annularly 
distributed relative to the object centre. For simplicity, 
we often drop the parameter c in p(k, c) and D(c) when 
there can be no confusion. Hence, the density p(k) for a 
smaller k reflects the characteristics of the pixels close 
to the object centre and the p(k) for a larger k reflects 
the characteristics of the pixels relatively far away 
from the object centre. With this representation, we 
will then be able to analyze and process the pixels with 
the implicit consideration of their physical locations.  

For a candidate region in the current frame of 
timestamp t, we denote by ct the derived object centre c 
at timestamp t, and denote by I(y) the color values at 
the pixel position y. Then the density for the current 
frame, similar to (1), is 
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The density pt(k) is similar to other type of color 
densities that can statistically represent the object 
features except that ours here has also incorporated the 
pixel locations. 

There are several advantages of this representation 
for the object: a) It integrates the pixels location into 
the color description without the explicit use of any 
location parameters, thus simplifying the later 
matching steps. b) The geometric base shape for the 
regions can vary, and can even be object dependent. 
One can choose a proper geometric shape that can best 
reflect the change distribution of the object appearance. 
c) The statistical representation of pixels in a region 
reduces the effect of changes on the number of object 
pixels in that region. It is thus able to better retain the 
object characteristics. d) The probability density 
proposed in this method provides a straightforward 
connection between the pixel locations and the pixel 
colors. Since the pixels with similar stableness are 
largely grouped together within a base shape, such 
importance can be easily strengthened or weakened by 
selecting proper coupling weights. e) It facilitates the 
coarse-to-fine searching strategy in the later matching 
process. 

Sk 

k 

p 

        (a)   (b) 
Figure 1. (a) Annular regions Sk. (b) Region-
wise color density on k. 
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3. Locating the object 
 

If we use the object density pt-1(k) at time t-1 as the 
template, and compare it with the density pt(k) of a 
candidate region in the current frame of time t, then the  
closeness of these two density functions should be 
weighted differently for the different elements derived 
from the different annuli. For this purpose, we 
introduce a coupling weight function φ(r)>0 that is 
monotonically decreasing with φ(r)→0 as r→∞. For 
any two distributions p(k) and q(k),  we define their 
inner product as (p, q)=∑1≤k≤m ϕ(rk)p(k)q(k). The more 
these two distributions, or vectors, are considered 
similar to one another, the more (p, q)2/[(p, p)(q, q)] is 
closer to 1. The weight function can give more 
significance or trust to the region closer to the object 
centre. This is consistent with the fact that a tracked 
object is more likely to deform along its boundary than 
in the centre area. Hence our model of annuli is 
particularly ideal to accommodate the changes that are 
somewhat proportional to the distances to the centre.  

The object location in the current frame should then 
be the one that minimizes the distance between the 
density function for the object template and the density 
function for the candidate region. The distance metric 
for the two density functions could simply be a 
Euclidean distance. However, in order to accommodate 
the potential illumination changes in the frames, which 
is a common phenomenon in video sequences, we 
calculate the ct as  
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where tp and 1−tp are the mean value of density for 
time t and time t-1 respectively. This calculation in (3) 
corresponds to the use of the following similarity 
metric ρ(p, q) 
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and such a metric will be able to preserve the linear 
transform of the color brightness, e.g. I(y) = αI*(y) +β.  

A brute force search for ct via (3) could be quite 
inefficient. We hence make use the 2-D-log search 
method [18] developed under a different setting. The 

search in the current frame starts from the object centre 
position of the previous frame, or from the projected 
centre position estimated from the previous centre 
moving speed. Each step tests five points in a diamond 
arrangement and repeats the diamond search in the 
next step with the centre moved to the best matched 
point. Nine search points are examined at the last step 
when the step size is reduced to 1 pixel. 

To further reduce the computational load, several 
strategies can be further considered: 1) Adopt less 
number of annuli for the object model without 
decreasing the accuracy significantly; 2) The search for 
the object centre can be conducted in two, coarse to 
fine, steps. The first step is to find a suitable candidate 
location using a smaller m, such as m=3, in (3). The 
second step is to further check the total difference of 
two densities between the candidate region and the 
object template; 3) The object pixels for inspection can 
be sub-sampled so that only one pixel is selected from 
every pair of consecutive pixels in space, resulting in a 
half number of pixels for the model. 
 
4. Object shape verification 
 

Once the centre location is determined, we can 
proceed to refine the object in the current frame. Most 
of the work would be to determine if the pixels near the 
object boundary remain in or outside the object due to 
the shape deformation during the object motion. Some 
pixels belonging to the object may have been excluded 
in the extracted region, and some pixels in the 
extracted region may no longer be part of the object. 
The object shape verification here is to examine the 
pixels near the predicted object boundary, i.e. the 
previous object boundary projected into the current 
frame. The area for the shape verification is the area 
within the distance ρv to the candidate object boundary 
in the current frame, as shown in figure 2, where the 
area is between Γ+ and Γ-, Γt is the predicted candidate 
object border, and Γt-1 denotes the corresponding 
object border in the previous frame. The search area 
for an examined pixel is the candidate object region 
within the distance ρs to the examined point, the area 
marked with the dash lines in figure 2, and the pixel 
color should be the object template color I*(x+d) rather 
than the candidate object color I(x). In other words, if 
we want to determine whether a pixel I(y) near the 
candidate boundary actually belongs to the object or 
not, we compare it with those object pixels I*(x+d) for 
d=ct- ct-1 and ||x-y||<ρs. To take into account the 
neighboring pixels for comparison, we design a 
neighborhood mask M for selecting the neighboring 
pixels, see figure 3 for an example. Then the object 
pixel that has the minimum difference with the 
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examined pixel in term of their respective neighbors 
can be found within the local search area, and the 
subsequent difference ∆ is obtained for the examined 
pixel to be considered if it belongs to the object. This 
difference ∆ is expressed as 
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where the spatial variable z goes over all the selected 
neighboring locations.  

 
We note that figure 2 illustrates the verification of 

pixels on whether they remain on the object. The area 
on the right of the solid curve is the candidate object 
region obtained via (3), the area between the round-
dotted lines needs to be examined, the slash dash line 
is the search region for maximum similarity of object 
pixels, and the dash-dot contour demarcates the 
object’s original location but in the current frame. 
Finally the verified object areas are extracted via a 
suitable threshold on the neighborhood similarity along 
the object boundary. 

 
The accuracy of the above verification is affected 

by the selected parameters ρv and ρs, as well as the 
neighborhood mask M. If the object and its 
surrounding background are well distinguished, then a 
larger ρv is better for the larger object deformation. 
Otherwise a smaller ρv would lead to less interference 
from the non-object background. 
 
5. Implementation and experiments 
 

The very first thing one needs to decide for 
implementation, due to (1) and (3), is the choice of the 
kernel function ψ(·) and the weight function ϕ(·). For 
these experiments, we can choose for the kernel 
function and the weight function the following N-
dimensional Gaussian 
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or the triangular function ψ(z)=1-||z|| for ||z||≤1 and 
zero otherwise, where z is an N-dimensional row vector 
and z′ is its transpose. The Gaussian is traditionally a 
popular kernel function in the literature. We note that 
the function for object template and weight can be 
quite similar or even the same, and the standard 
deviation σ should remain the same for both the object 
template and the candidate region. The object location 
is thus determined by minimizing the error between the 
template pt-1(k) and the candidate region pt(k) via (3). 
 

 

 
 

a b 
c d 
  

Figure 4. a. Original object. b. 
Locating object. c. Verifying 
object. d. Full object extracted. 

We now illustrate our experiments on two video 
sequences. For the first sequence, we take m=8 for the 
object model, and set the radius rk =5k+1 pixels for the 
concentric circles. The density function for the object 
is obtained via (1). Then we apply the fast search 
algorithm [18] to locate the new position of the object 
which has the most similar density as the object model 
via (3). The result is shown in figure 4 (b), where the 
brighter boundary indicates the new location while 
another boundary depicts the original object shape in 
the previous frame as in figure 4 (a). Next we verify or 
refine the object shape. The local area to be considered 
for shape deformation is chosen to be within the 
distance of ρv=8 pixels along the projected boundary 
for the candidate object. The mask for selected 

Figure 3.  Neighborhood mask. 

     
     
     
     
     

· 

Figure 2.  Pixel-wise verification
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neighbors is a diamond shape of 13 pixels in total as 
shown in figure 3.  

The resulting object contour and the final fully 
extracted object are shown in figure 4 (c) and (d).  The 
brighter contour in (d) can be regarded as refined or 
adjusted from the original one in (a). In this shape 
refinement step, our experiments show that the 
determination of the pixels on the upper sides of the 
object is not so effective due to the background being 
somewhat similar to the upper part of that object. If the 
object shape deformation is not expected to be large, 
then the refinement operation can be restricted to a 
narrower area corresponding to a smaller ρv in figure 2. 
Typical frames with extracted object contours are also 
depicted in figure 5 below, where the contours are 
again shown in a bright color.  

  
  

Figure 5. Some tracked movement 
 

There can be various different similarity or distance 
metrics, like that in (4), which can potentially affect the 
tracking performance. We thus conduct in figure 6 a 
comparison by different similarity measures. Figure 6 
(a), (c), (e) are based on the standard Euclidean 
distance and figure 6 (b), (d), (f) are based on our 
proposed measure in (4) or (3). In figure 6 (a) and (b), 
both distance measures lead to similarly correct object 
location in the subsequent frame. However, when the 
frames are preprocessed to reflect the potential 
illumination changes by undergoing a certain degree of 
linear transformation, the results due to the different 
measures are hugely different as in figure 6 (c) and (d), 
where latter corresponds to the metric in (4). The 
experiments showed that the similarity measure (4) can 
still locate the object properly in (d) whereas the 
Euclidean distance has led to a significant deviation 
from its correct position as shown in (c). Further 
experiments are even conducted on some simple 
nonlinear transformations. In fact figure 6 (e) and (f), 
also for the Euclidean distance and our proposed 
similarity metric (4) respectively, illustrate the tracking 

results when the color has undergone a quadratic 
transformation. The latter again holds out well as seen 
in figure 6 (f) while the former falters as expected. This 
empirical result for the nonlinear transformation is 
somehow unexpected, and may be somewhat 
accidental for this case. In any case, the similarity 
metric in (4) is more robust at handling the tracking, 
especially when there are lighting changes or the like 
in the scene. 

 

 

 
 

a b 
c d 
e f 

Figure 6. Comparison on 
locating the object with two 
different similarity measures. 

 
For a different setting, we conducted another 

experiment on a parrot video sequence, and the results 
are summarized in figure 7. To highlight the object 
traces and avoid the cluttering of the contours, we only 
plot with a bright dot the centre of the object parrot. 
The video sequence starts from the frame in figure 7 
(a), the bright heavy dots will each denote the object 
centre of a particular frame. Figure 7 (b), (c), (d) and 
(e) thus depict the traces of the parrot across a 
consecutive sequence of frames. In creating the last 
picture (f) of figure 7, the parrot template has actually 
been adjusted during the frame by frame object 
tracking since the appearance of the parrot has 
undergone relatively larger changes. 

 
6. Conclusion 
 

We proposed an object representation by a kernel-
based color probability density function over a 
collection of concentric annuli at the object centre. 
Each value of the density function corresponds to the 
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pixels in a specific annulus as a single entity. Although 
the object representation through features on annuli can 
be extended to more than one patches of stable color 
appearance, the rotational invariance of the annuli in 
the current model simplifies both the representation 
and the computation. A more noise-tolerant similarity 
metric has been shown to perform more robustly 
compared with the traditional Euclidean distance, when 
determining the similarity between two object 
representations. The proposed tracking scheme has 
been shown to be applicable to video sequences 
containing the motion of a non-rigid object within a 
non-stationary background. The method is both 
effective and efficient, due to the associated succinct 
modeling, in dealing with objects of deforming shapes, 
and the last verification step further refines the shape 
of the tracked object in the newer frames. 

 

 

 
 

a b 
c d 
e f 

Figure 7. Parrot movement 
and the traces of its centre. 
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